Cargando…
An Exploratory Radiomics Approach to Quantifying Pulmonary Function in CT Images
Contemporary medical imaging is becoming increasingly more quantitative. The emerging field of radiomics is a leading example. By translating unstructured data (i.e., images) into structured data (i.e., imaging features), radiomics can potentially characterize clinically useful imaging phenotypes. I...
Autores principales: | Lafata, Kyle J., Zhou, Zhennan, Liu, Jian-Guo, Hong, Julian, Kelsey, Chris R., Yin, Fang-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687824/ https://www.ncbi.nlm.nih.gov/pubmed/31395937 http://dx.doi.org/10.1038/s41598-019-48023-5 |
Ejemplares similares
-
An investigation of machine learning methods in delta-radiomics feature analysis
por: Chang, Yushi, et al.
Publicado: (2019) -
Photon Counting CT and Radiomic Analysis Enables Differentiation of Tumors Based on Lymphocyte Burden
por: Allphin, Alex J., et al.
Publicado: (2022) -
Differentiation of pulmonary sclerosing pneumocytoma from solid malignant pulmonary nodules by radiomic analysis on multiphasic CT
por: Ni, Xiao‐Qiong, et al.
Publicado: (2020) -
Radiomics analysis based on CT for the prediction of pulmonary metastases in ewing sarcoma
por: Liu, Ying, et al.
Publicado: (2023) -
CT Radiomics Model for Predicting the Ki-67 Index of Lung Cancer: An Exploratory Study
por: Fu, Qing, et al.
Publicado: (2021)