Cargando…
Predicting MCI Status From Multimodal Language Data Using Cascaded Classifiers
Recent work has indicated the potential utility of automated language analysis for the detection of mild cognitive impairment (MCI). Most studies combining language processing and machine learning for the prediction of MCI focus on a single language task; here, we consider a cascaded approach to com...
Autores principales: | Fraser, Kathleen C., Lundholm Fors, Kristina, Eckerström, Marie, Öhman, Fredrik, Kokkinakis, Dimitrios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688130/ https://www.ncbi.nlm.nih.gov/pubmed/31427959 http://dx.doi.org/10.3389/fnagi.2019.00205 |
Ejemplares similares
-
Using a Discourse Task to Explore Semantic Ability in Persons With Cognitive Impairment
por: Antonsson, Malin, et al.
Publicado: (2021) -
Identification of Mild Cognitive Impairment From Speech in Swedish Using Deep Sequential Neural Networks
por: Themistocleous, Charalambos, et al.
Publicado: (2018) -
Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls
por: Themistocleous, Charalambos, et al.
Publicado: (2020) -
Classifying MCI Subtypes in Community-Dwelling Elderly Using Cross-Sectional and Longitudinal MRI-Based Biomarkers
por: Guan, Hao, et al.
Publicado: (2017) -
Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data
por: Jitsuishi, Tatsuya, et al.
Publicado: (2022)