Cargando…
MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources
BACKGROUND: Emerging evidences show that microRNA (miRNA) plays an important role in many human complex diseases. However, considering the inherent time-consuming and expensive of traditional in vitro experiments, more and more attention has been paid to the development of efficient and feasible com...
Autores principales: | Zheng, Kai, You, Zhu-Hong, Wang, Lei, Zhou, Yong, Li, Li-Ping, Li, Zheng-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688360/ https://www.ncbi.nlm.nih.gov/pubmed/31395072 http://dx.doi.org/10.1186/s12967-019-2009-x |
Ejemplares similares
-
Identifying Key MicroRNA Signatures for Neurodegenerative Diseases With Machine Learning Methods
por: Li, ZhanDong, et al.
Publicado: (2022) -
BNEMDI: A Novel MicroRNA–Drug Interaction Prediction Model Based on Multi-Source Information With a Large-Scale Biological Network
por: Guan, Yong-Jian, et al.
Publicado: (2022) -
Identifying Human SIRT1 Substrates by Integrating Heterogeneous Information from Various Sources
por: Zhai, Zichao, et al.
Publicado: (2017) -
A Brief Survey for MicroRNA Precursor Identification Using Machine Learning Methods
por: Guan, Zheng-Xing, et al.
Publicado: (2020) -
Machine learning in the development of targeting microRNAs in human disease
por: Luo, Yuxun, et al.
Publicado: (2023)