Cargando…
Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review
BACKGROUND: Machine learning (ML) has become a vital part of medical imaging research. ML methods have evolved over the years from manual seeded inputs to automatic initializations. The advancements in the field of ML have led to more intelligent and self-reliant computer-aided diagnosis (CAD) syste...
Autores principales: | Gardezi, Syed Jamal Safdar, Elazab, Ahmed, Lei, Baiying, Wang, Tianfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688437/ https://www.ncbi.nlm.nih.gov/pubmed/31350843 http://dx.doi.org/10.2196/14464 |
Ejemplares similares
-
Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
por: Abdelaziz, Mohammed, et al.
Publicado: (2022) -
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
por: Lei, Baiying, et al.
Publicado: (2016) -
Mammographic screening for breast cancer: A review
por: Lee, Warwick, et al.
Publicado: (2013) -
Mammographic breast density and the risk of breast cancer: A systematic review and meta-analysis
por: Bodewes, F.T.H., et al.
Publicado: (2022) -
Breast cancer detection using sonography in women with mammographically dense breasts
por: Okello, Jimmy, et al.
Publicado: (2014)