Cargando…

Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico

The objective was to assess anti-progression and stimulatory immune response effects among anthocyanins (ANC) and their metabolites on human colorectal cancer cells in vitro and in silico. Pure phenolics including delphinidin-3-O-glucoside (D3G) and its metabolites, delphinidin (DC) and gallic acid...

Descripción completa

Detalles Bibliográficos
Autores principales: Mazewski, Candice, Kim, Morgan Sanha, Gonzalez de Mejia, Elvira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689002/
https://www.ncbi.nlm.nih.gov/pubmed/31399602
http://dx.doi.org/10.1038/s41598-019-47903-0
_version_ 1783442965933326336
author Mazewski, Candice
Kim, Morgan Sanha
Gonzalez de Mejia, Elvira
author_facet Mazewski, Candice
Kim, Morgan Sanha
Gonzalez de Mejia, Elvira
author_sort Mazewski, Candice
collection PubMed
description The objective was to assess anti-progression and stimulatory immune response effects among anthocyanins (ANC) and their metabolites on human colorectal cancer cells in vitro and in silico. Pure phenolics including delphinidin-3-O-glucoside (D3G) and its metabolites, delphinidin (DC) and gallic acid (GA), were tested alone or in combination, on HCT-116 and HT-29 human colorectal cancer cells (100–600 µg/mL). HCT-116 and HT-29 50% inhibition concentrations (µg/mL) were 396 ± 23 and 329 ± 17 for D3G; 242 ± 16 and >600 for DC; and 154 ± 5 and 81 ± 5 for GA, respectively. Using molecular docking, cyanidin-3-O-glucoside (C3G) showed the highest potential to inhibit immune checkpoints: programmed cell death protein-1 (PD-1) (−6.8 kcal/mol) and programmed death-ligand-1 (PD-L1) (−9.6 kcal/mol). C3G, D3G, DC, GA, and D3G-rich extracts decreased PD-L1 protein expression in HCT-116 cells. C3G decreased PD-L1 fluorescence intensity by 39%. ANC decreased PD-1 expression in peripheral blood mononuclear cells in monoculture by 41% and 55%, and co-culture with HCT-116 and HT-29 cells by 39% and 26% (C3G) and 50% and 51% (D3G), respectively. D3G and C3G, abundant in plant foods, showed potential for binding with and inhibiting immune checkpoints, PD-1 and PD-L1, which can activate immune response in the tumor microenvironment and induce cancer cell death.
format Online
Article
Text
id pubmed-6689002
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66890022019-08-13 Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico Mazewski, Candice Kim, Morgan Sanha Gonzalez de Mejia, Elvira Sci Rep Article The objective was to assess anti-progression and stimulatory immune response effects among anthocyanins (ANC) and their metabolites on human colorectal cancer cells in vitro and in silico. Pure phenolics including delphinidin-3-O-glucoside (D3G) and its metabolites, delphinidin (DC) and gallic acid (GA), were tested alone or in combination, on HCT-116 and HT-29 human colorectal cancer cells (100–600 µg/mL). HCT-116 and HT-29 50% inhibition concentrations (µg/mL) were 396 ± 23 and 329 ± 17 for D3G; 242 ± 16 and >600 for DC; and 154 ± 5 and 81 ± 5 for GA, respectively. Using molecular docking, cyanidin-3-O-glucoside (C3G) showed the highest potential to inhibit immune checkpoints: programmed cell death protein-1 (PD-1) (−6.8 kcal/mol) and programmed death-ligand-1 (PD-L1) (−9.6 kcal/mol). C3G, D3G, DC, GA, and D3G-rich extracts decreased PD-L1 protein expression in HCT-116 cells. C3G decreased PD-L1 fluorescence intensity by 39%. ANC decreased PD-1 expression in peripheral blood mononuclear cells in monoculture by 41% and 55%, and co-culture with HCT-116 and HT-29 cells by 39% and 26% (C3G) and 50% and 51% (D3G), respectively. D3G and C3G, abundant in plant foods, showed potential for binding with and inhibiting immune checkpoints, PD-1 and PD-L1, which can activate immune response in the tumor microenvironment and induce cancer cell death. Nature Publishing Group UK 2019-08-09 /pmc/articles/PMC6689002/ /pubmed/31399602 http://dx.doi.org/10.1038/s41598-019-47903-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mazewski, Candice
Kim, Morgan Sanha
Gonzalez de Mejia, Elvira
Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
title Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
title_full Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
title_fullStr Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
title_full_unstemmed Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
title_short Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
title_sort anthocyanins, delphinidin-3-o-glucoside and cyanidin-3-o-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689002/
https://www.ncbi.nlm.nih.gov/pubmed/31399602
http://dx.doi.org/10.1038/s41598-019-47903-0
work_keys_str_mv AT mazewskicandice anthocyaninsdelphinidin3oglucosideandcyanidin3oglucosideinhibitimmunecheckpointsinhumancolorectalcancercellsinvitroandinsilico
AT kimmorgansanha anthocyaninsdelphinidin3oglucosideandcyanidin3oglucosideinhibitimmunecheckpointsinhumancolorectalcancercellsinvitroandinsilico
AT gonzalezdemejiaelvira anthocyaninsdelphinidin3oglucosideandcyanidin3oglucosideinhibitimmunecheckpointsinhumancolorectalcancercellsinvitroandinsilico