Cargando…
Medium-thickness-dependent proton dosimetry for radiobiological experiments
A calibration method was proposed in the present work to determine the medium-thickness-dependent proton doses absorbed in cellular components (i.e., cellular cytoplasm and nucleus) in radiobiological experiments. Consideration of the dependency on medium thickness was crucial as the linear energy t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689061/ https://www.ncbi.nlm.nih.gov/pubmed/31399622 http://dx.doi.org/10.1038/s41598-019-48100-9 |
Sumario: | A calibration method was proposed in the present work to determine the medium-thickness-dependent proton doses absorbed in cellular components (i.e., cellular cytoplasm and nucleus) in radiobiological experiments. Consideration of the dependency on medium thickness was crucial as the linear energy transfer (LET) of protons could rise to a sharp peak (known as the Bragg peak) towards the end of their ranges. Relationships between the calibration coefficient R vs medium-layer thickness were obtained for incident proton energies of 10, 15, 20, 25, 30 and 35 MeV, and for various medium thicknesses up to 5000 μm, where R was defined as the ratio D(A)/D(E), D(A) was the absorbed proton dose in cellular components, and D(E) was the absorbed proton dose in a separate radiation detector. In the present work, D(A) and D(E) were determined using the MCNPX (Monte Carlo N-Particle eXtended) code version 2.4.0. For lower incident proton energies (i.e., 10, 15 and 20 MeV), formation of Bragg-peak-like features were noticed in their R-vs-medium-layer-thickness relationships, and large R values of >7 and >6 were obtained for cytoplasm and nucleus of cells, respectively, which highlighted the importance of careful consideration of the medium thickness in radiobiological experiments. |
---|