Cargando…
Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight
BACKGROUND: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during sp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689164/ https://www.ncbi.nlm.nih.gov/pubmed/31399081 http://dx.doi.org/10.1186/s40168-019-0724-4 |
_version_ | 1783442998596468736 |
---|---|
author | Jiang, Peng Green, Stefan J. Chlipala, George E. Turek, Fred W. Vitaterna, Martha Hotz |
author_facet | Jiang, Peng Green, Stefan J. Chlipala, George E. Turek, Fred W. Vitaterna, Martha Hotz |
author_sort | Jiang, Peng |
collection | PubMed |
description | BACKGROUND: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive. METHODS: We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically available transcriptomic data in the liver of the same animals for a systems-level analysis. RESULTS: We report an elevated microbiome alpha diversity and an altered microbial community structure that were associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order, one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship between host genes involved in protein metabolism and microbial genes involved in putrescine degradation. CONCLUSIONS: These observations shed light on the specific environmental factors that contributed to a robust effect on the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during long-term human space expeditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-019-0724-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6689164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-66891642019-08-15 Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight Jiang, Peng Green, Stefan J. Chlipala, George E. Turek, Fred W. Vitaterna, Martha Hotz Microbiome Research BACKGROUND: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive. METHODS: We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically available transcriptomic data in the liver of the same animals for a systems-level analysis. RESULTS: We report an elevated microbiome alpha diversity and an altered microbial community structure that were associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order, one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship between host genes involved in protein metabolism and microbial genes involved in putrescine degradation. CONCLUSIONS: These observations shed light on the specific environmental factors that contributed to a robust effect on the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during long-term human space expeditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-019-0724-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-08-09 /pmc/articles/PMC6689164/ /pubmed/31399081 http://dx.doi.org/10.1186/s40168-019-0724-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Jiang, Peng Green, Stefan J. Chlipala, George E. Turek, Fred W. Vitaterna, Martha Hotz Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
title | Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
title_full | Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
title_fullStr | Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
title_full_unstemmed | Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
title_short | Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
title_sort | reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689164/ https://www.ncbi.nlm.nih.gov/pubmed/31399081 http://dx.doi.org/10.1186/s40168-019-0724-4 |
work_keys_str_mv | AT jiangpeng reproduciblechangesinthegutmicrobiomesuggestashiftinmicrobialandhostmetabolismduringspaceflight AT greenstefanj reproduciblechangesinthegutmicrobiomesuggestashiftinmicrobialandhostmetabolismduringspaceflight AT chlipalageorgee reproduciblechangesinthegutmicrobiomesuggestashiftinmicrobialandhostmetabolismduringspaceflight AT turekfredw reproduciblechangesinthegutmicrobiomesuggestashiftinmicrobialandhostmetabolismduringspaceflight AT vitaternamarthahotz reproduciblechangesinthegutmicrobiomesuggestashiftinmicrobialandhostmetabolismduringspaceflight |