Cargando…

microRNA-27a-3p Down-regulation Inhibits Malignant Biological Behaviors of Ovarian Cancer by Targeting BTG1

Ovarian cancer is the most deadly malignant tumor. MicroRNA-27a-3p (miR-27a-3p) was a tumor oncogene in various cancers. However, the role and mechanism of miR-27a-3p in ovarian cancer are still unknown. In this study, we found that miR-27a-3p over-expression could significantly promote the viabilit...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Enfang, Han, Ke, Zhou, Xuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689206/
https://www.ncbi.nlm.nih.gov/pubmed/31410369
http://dx.doi.org/10.1515/med-2019-0065
Descripción
Sumario:Ovarian cancer is the most deadly malignant tumor. MicroRNA-27a-3p (miR-27a-3p) was a tumor oncogene in various cancers. However, the role and mechanism of miR-27a-3p in ovarian cancer are still unknown. In this study, we found that miR-27a-3p over-expression could significantly promote the viability of SK-OV-3 cells, enhance cell migration and invasion, and reduce cell apoptosis. Besides, results from western blot assay showed that miR-27a-3p over-expression could increase Bcl-2 protein expression and decrease Bax protein expression. Furthermore, TargetScan and the dual luciferase reporter gene assay revealed that BTG anti-proliferation factor 1 (BTG1) was a direct target of miR-27a-3p. In addition, we found that miR-27a-3p down-regulation suppressed SK-OV-3 cell viability, migration and invasion, and promoted cell apoptosis. All the effects of miR-27a-3p down-regulation on SK-OV-3 cells were reversed by BTG1-siRNA. Therefore, miR-27a-3p/BTG1 axis may be a new potential target for the treatment of ovarian cancer.