Cargando…

Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form

The energy budget is an indicator of an organism’s overall condition. Changes in energy reserves and/or energy consumption have been used as biomarkers of toxic stress. To understand the effects of different forms and concentrations of Zn and the costs of effective Zn regulation by the earthworm Eis...

Descripción completa

Detalles Bibliográficos
Autores principales: Świątek, Zuzanna M., Bednarska, Agnieszka J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689315/
https://www.ncbi.nlm.nih.gov/pubmed/31243653
http://dx.doi.org/10.1007/s11356-019-05753-3
Descripción
Sumario:The energy budget is an indicator of an organism’s overall condition. Changes in energy reserves and/or energy consumption have been used as biomarkers of toxic stress. To understand the effects of different forms and concentrations of Zn and the costs of effective Zn regulation by the earthworm Eisenia andrei, we performed a toxicokinetic experiment in which individuals were sampled over time to determine the available energy reserves (total carbohydrate, protein, and lipid content), energy consumption (measured at the cellular level and as the whole-animal respiration rate), and internal Zn concentration. The earthworms were exposed to ZnCl(2) or zinc nanoparticles (ZnO-NPs) in Lufa 2.2 soil for 21 days (contamination phase), followed by 14 days of elimination in clean soil (decontamination phase). Carbohydrates were the only energy reserves with significantly lower levels following ZnO-NP 1000 treatment than following other treatments (p ≤ 0.00001) in the contamination phase. The total available energy reserves and protein content did not differ among treatments, but a significant effect of exposure time was observed (p ≤ 0.0001). Exposure to Zn (both ions and NPs) increased energy consumption at the cellular level, reflecting the high energy demand of the stress response. The results indicated that E. andrei can regulate internal Zn concentrations efficiently, regardless of form or concentration, without considerable impact on energy reserves or respiration rate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11356-019-05753-3) contains supplementary material, which is available to authorized users.