Cargando…
Post-treatment of Fungal Biomass to Enhance Pigment Production
A new post-treatment method of fungal biomass after fermentation is revealed. The post-treatment strategy was utilized to produce pigments as an additional valuable metabolite. Post-treatment included incubation at 95% relative humidity where the effects of harvesting time, light, and temperature we...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689318/ https://www.ncbi.nlm.nih.gov/pubmed/30957195 http://dx.doi.org/10.1007/s12010-019-02961-y |
Sumario: | A new post-treatment method of fungal biomass after fermentation is revealed. The post-treatment strategy was utilized to produce pigments as an additional valuable metabolite. Post-treatment included incubation at 95% relative humidity where the effects of harvesting time, light, and temperature were studied. Pigment-producing edible filamentous fungus Neurospora intermedia cultivated on ethanol plant residuals produced 4 g/L ethanol and 5 g/L fungal biomass. Harvesting the pale biomass after 48 h submerged cultivation compared to 24 h or 72 h increased pigmentation in the post-treatment step with 35% and 48%, respectively. The highest pigment content produced, 1.4 mg/g dry fungal biomass, was obtained from washed biomass treated in light at 35 °C whereof the major impact on pigmentation was from washed biomass. Moreover, post-treated biomass contained 50% (w/w) crude protein. The post-treatment strategy successfully adds pigments to pre-obtained biomass. The pigmented fungal biomass can be considered for animal feed applications for domestic animals. |
---|