Cargando…
Prediction and Staging of Hepatic Fibrosis in Children with Hepatitis C Virus: A Machine Learning Approach
OBJECTIVES: The aim of this study is to develop an intelligent diagnostic system utilizing machine learning for data cleansing, then build an intelligent model and obtain new cutoff values for APRI (aspartate aminotransferase-to-platelet ratio) and FIB-4 (fibrosis score) for the prediction and stagi...
Autores principales: | Barakat, Nahla H., Barakat, Sana H., Ahmed, Nadia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689505/ https://www.ncbi.nlm.nih.gov/pubmed/31406609 http://dx.doi.org/10.4258/hir.2019.25.3.173 |
Ejemplares similares
-
Diagnosing the Stage of Hepatitis C Using Machine Learning
por: Butt, Muhammad Bilal, et al.
Publicado: (2021) -
Machine Learning Approaches for the Prediction of Hepatitis B and C Seropositivity
por: Harabor, Valeriu, et al.
Publicado: (2023) -
Atherosclerosis in chronic hepatitis C virus patients with and without liver cirrhosis
por: Barakat, Ashraf Abd El-Khalik, et al.
Publicado: (2017) -
The role of BCL9 genetic variation as a biomarker for hepatitis C-related hepatocellular carcinoma in Egyptian patients
por: Abbas, Eman Abd El Razek, et al.
Publicado: (2022) -
HEPATITIS VIRUS C INFECTION, ADIPOKINES AND HEPATIC STEATO–FIBROSIS
por: Ciurtin, C, et al.
Publicado: (2008)