Cargando…
Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model
OBJECTIVES: Biosignal data captured by patient monitoring systems could provide key evidence for detecting or predicting critical clinical events; however, noise in these data hinders their use. Because deep learning algorithms can extract features without human annotation, this study hypothesized t...
Autores principales: | Yoon, Dukyong, Lim, Hong Seok, Jung, Kyoungwon, Kim, Tae Young, Lee, Sukhoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689506/ https://www.ncbi.nlm.nih.gov/pubmed/31406612 http://dx.doi.org/10.4258/hir.2019.25.3.201 |
Ejemplares similares
-
Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Development of a Risk Score for QT Prolongation in the Intensive Care Unit Using Time-Series Electrocardiogram Data and Electronic Medical Records
por: Kim, Tae Young, et al.
Publicado: (2021) -
ECG-ViEW II, a freely accessible electrocardiogram database
por: Kim, Young-Gun, et al.
Publicado: (2017) -
Data-driven drug-induced QT prolongation surveillance using adverse reaction signals derived from 12-lead and continuous electrocardiogram data
por: Choi, Byung Jin, et al.
Publicado: (2022)