Cargando…
Inequality in resource allocation and population dynamics models
The Hassell model has been widely used as a general discrete-time population dynamics model that describes both contest and scramble intraspecific competition through a tunable exponent. Since the two types of competition generally lead to different degrees of inequality in the resource distribution...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689590/ https://www.ncbi.nlm.nih.gov/pubmed/31417707 http://dx.doi.org/10.1098/rsos.182178 |
Sumario: | The Hassell model has been widely used as a general discrete-time population dynamics model that describes both contest and scramble intraspecific competition through a tunable exponent. Since the two types of competition generally lead to different degrees of inequality in the resource distribution among individuals, the exponent is expected to be related to this inequality. However, among various first-principles derivations of this model, none is consistent with this expectation. This paper explores whether a Hassell model with an exponent related to inequality in resource allocation can be derived from first principles. Indeed, such a Hassell model can be derived by assuming random competition for resources among the individuals wherein each individual can obtain only a fixed amount of resources at a time. Changing the size of the resource unit alters the degree of inequality, and the exponent changes accordingly. As expected, the Beverton–Holt and Ricker models can be regarded as the highest and lowest inequality cases of the derived Hassell model, respectively. Two additional Hassell models are derived under some modified assumptions. |
---|