Cargando…
Study on synthesis and application of tetrabasic lead sulfate as the positive active material additive for lead-acid batteries
Tetrabasic lead sulfate (4BS) was used as a positive active material additive for lead-acid batteries, which affirmatively affected the performance of the battery. Herein, tetrabasic lead sulfate was synthesized from scrap lead paste that was formed through the production process of the lead-acid ba...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689651/ https://www.ncbi.nlm.nih.gov/pubmed/31417764 http://dx.doi.org/10.1098/rsos.190882 |
Sumario: | Tetrabasic lead sulfate (4BS) was used as a positive active material additive for lead-acid batteries, which affirmatively affected the performance of the battery. Herein, tetrabasic lead sulfate was synthesized from scrap lead paste that was formed through the production process of the lead-acid batteries. This solves the disposing problem of the scrap lead paste that is challenging in the production of the lead-acid batteries. Scrap lead paste was first pre-treated and the 4BS with high purity and crystalline was synthesized by sintering at the temperature of 450°C and hold time of 7 h. As demonstrated by X-ray diffraction and scanning electron microscopy test and Material Studio software calculation, the purity of synthesized 4BS is higher than 98 wt%, small particles have pillar forms and are evenly distributed. Moreover, the synthesized 4BS of 1 wt% was added to the positive lead paste and then valve-regulated lead-acid battery was made after the pasting, curing and formation processes. The effectiveness of the lead-acid batteries after adding 4BS as crystal seeds was evaluated, and the 100% charge–discharge cycle life of the new battery (523 times) was about 1.4 times higher than that of general lead-acid batteries (365 times). |
---|