Cargando…

OGER++: hybrid multi-type entity recognition

BACKGROUND: We present a text-mining tool for recognizing biomedical entities in scientific literature. OGER++ is a hybrid system for named entity recognition and concept recognition (linking), which combines a dictionary-based annotator with a corpus-based disambiguation component. The annotator us...

Descripción completa

Detalles Bibliográficos
Autores principales: Furrer, Lenz, Jancso, Anna, Colic, Nicola, Rinaldi, Fabio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689863/
https://www.ncbi.nlm.nih.gov/pubmed/30666476
http://dx.doi.org/10.1186/s13321-018-0326-3
Descripción
Sumario:BACKGROUND: We present a text-mining tool for recognizing biomedical entities in scientific literature. OGER++ is a hybrid system for named entity recognition and concept recognition (linking), which combines a dictionary-based annotator with a corpus-based disambiguation component. The annotator uses an efficient look-up strategy combined with a normalization method for matching spelling variants. The disambiguation classifier is implemented as a feed-forward neural network which acts as a postfilter to the previous step. RESULTS: We evaluated the system in terms of processing speed and annotation quality. In the speed benchmarks, the OGER++ web service processes 9.7 abstracts or 0.9 full-text documents per second. On the CRAFT corpus, we achieved 71.4% and 56.7% F1 for named entity recognition and concept recognition, respectively. CONCLUSIONS: Combining knowledge-based and data-driven components allows creating a system with competitive performance in biomedical text mining.