Cargando…
OGER++: hybrid multi-type entity recognition
BACKGROUND: We present a text-mining tool for recognizing biomedical entities in scientific literature. OGER++ is a hybrid system for named entity recognition and concept recognition (linking), which combines a dictionary-based annotator with a corpus-based disambiguation component. The annotator us...
Autores principales: | Furrer, Lenz, Jancso, Anna, Colic, Nicola, Rinaldi, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689863/ https://www.ncbi.nlm.nih.gov/pubmed/30666476 http://dx.doi.org/10.1186/s13321-018-0326-3 |
Ejemplares similares
-
Entity recognition in the biomedical domain using a hybrid approach
por: Basaldella, Marco, et al.
Publicado: (2017) -
Parallel sequence tagging for concept recognition
por: Furrer, Lenz, et al.
Publicado: (2022) -
Learning adaptive representations for entity recognition in the biomedical domain
por: Lauriola, Ivano, et al.
Publicado: (2021) -
Strepto-DB, a database for comparative genomics of group A (GAS) and B (GBS) streptococci, implemented with the novel database platform ‘Open Genome Resource’ (OGeR)
por: Klein, Johannes, et al.
Publicado: (2009) -
Developing a hybrid dictionary-based bio-entity recognition technique
por: Song, Min, et al.
Publicado: (2015)