Cargando…
QBMG: quasi-biogenic molecule generator with deep recurrent neural network
Biogenic compounds are important materials for drug discovery and chemical biology. In this work, we report a quasi-biogenic molecule generator (QBMG) to compose virtual quasi-biogenic compound libraries by means of gated recurrent unit recurrent neural networks. The library includes stereo-chemical...
Autores principales: | Zheng, Shuangjia, Yan, Xin, Gu, Qiong, Yang, Yuedong, Du, Yunfei, Lu, Yutong, Xu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689867/ https://www.ncbi.nlm.nih.gov/pubmed/30656426 http://dx.doi.org/10.1186/s13321-019-0328-9 |
Ejemplares similares
-
Quantitative evaluation of explainable graph neural networks for molecular property prediction
por: Rao, Jiahua, et al.
Publicado: (2022) -
Deep scaffold hopping with multimodal transformer neural networks
por: Zheng, Shuangjia, et al.
Publicado: (2021) -
LSA: a local-weighted structural alignment tool for pharmaceutical virtual screening
por: Li, Xiuming, et al.
Publicado: (2019) -
Generating Focused Molecule Libraries for Drug Discovery with Recurrent
Neural Networks
por: Segler, Marwin H. S., et al.
Publicado: (2017) -
Structure-aware protein solubility prediction from sequence through graph convolutional network and predicted contact map
por: Chen, Jianwen, et al.
Publicado: (2021)