Cargando…
Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy
Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA(Leu(UUR)) nucleotide...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689928/ https://www.ncbi.nlm.nih.gov/pubmed/31253706 http://dx.doi.org/10.1073/pnas.1906896116 |
_version_ | 1783443117187268608 |
---|---|
author | Kopinski, Piotr K. Janssen, Kevin A. Schaefer, Patrick M. Trefely, Sophie Perry, Caroline E. Potluri, Prasanth Tintos-Hernandez, Jesus A. Singh, Larry N. Karch, Kelly R. Campbell, Sydney L. Doan, Mary T. Jiang, Helen Nissim, Itzhak Nakamaru-Ogiso, Eiko Wellen, Kathryn E. Snyder, Nathaniel W. Garcia, Benjamin A. Wallace, Douglas C. |
author_facet | Kopinski, Piotr K. Janssen, Kevin A. Schaefer, Patrick M. Trefely, Sophie Perry, Caroline E. Potluri, Prasanth Tintos-Hernandez, Jesus A. Singh, Larry N. Karch, Kelly R. Campbell, Sydney L. Doan, Mary T. Jiang, Helen Nissim, Itzhak Nakamaru-Ogiso, Eiko Wellen, Kathryn E. Snyder, Nathaniel W. Garcia, Benjamin A. Wallace, Douglas C. |
author_sort | Kopinski, Piotr K. |
collection | PubMed |
description | Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA(Leu(UUR)) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD(+)/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD(+)/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease. |
format | Online Article Text |
id | pubmed-6689928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-66899282019-08-14 Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy Kopinski, Piotr K. Janssen, Kevin A. Schaefer, Patrick M. Trefely, Sophie Perry, Caroline E. Potluri, Prasanth Tintos-Hernandez, Jesus A. Singh, Larry N. Karch, Kelly R. Campbell, Sydney L. Doan, Mary T. Jiang, Helen Nissim, Itzhak Nakamaru-Ogiso, Eiko Wellen, Kathryn E. Snyder, Nathaniel W. Garcia, Benjamin A. Wallace, Douglas C. Proc Natl Acad Sci U S A PNAS Plus Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA(Leu(UUR)) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD(+)/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD(+)/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease. National Academy of Sciences 2019-08-06 2019-06-28 /pmc/articles/PMC6689928/ /pubmed/31253706 http://dx.doi.org/10.1073/pnas.1906896116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Kopinski, Piotr K. Janssen, Kevin A. Schaefer, Patrick M. Trefely, Sophie Perry, Caroline E. Potluri, Prasanth Tintos-Hernandez, Jesus A. Singh, Larry N. Karch, Kelly R. Campbell, Sydney L. Doan, Mary T. Jiang, Helen Nissim, Itzhak Nakamaru-Ogiso, Eiko Wellen, Kathryn E. Snyder, Nathaniel W. Garcia, Benjamin A. Wallace, Douglas C. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy |
title | Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy |
title_full | Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy |
title_fullStr | Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy |
title_full_unstemmed | Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy |
title_short | Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy |
title_sort | regulation of nuclear epigenome by mitochondrial dna heteroplasmy |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689928/ https://www.ncbi.nlm.nih.gov/pubmed/31253706 http://dx.doi.org/10.1073/pnas.1906896116 |
work_keys_str_mv | AT kopinskipiotrk regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT janssenkevina regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT schaeferpatrickm regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT trefelysophie regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT perrycarolinee regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT potluriprasanth regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT tintoshernandezjesusa regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT singhlarryn regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT karchkellyr regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT campbellsydneyl regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT doanmaryt regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT jianghelen regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT nissimitzhak regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT nakamaruogisoeiko regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT wellenkathryne regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT snydernathanielw regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT garciabenjamina regulationofnuclearepigenomebymitochondrialdnaheteroplasmy AT wallacedouglasc regulationofnuclearepigenomebymitochondrialdnaheteroplasmy |