Cargando…

Credit assignment to state-independent task representations and its relationship with model-based decision making

Model-free learning enables an agent to make better decisions based on prior experience while representing only minimal knowledge about an environment’s structure. It is generally assumed that model-free state representations are based on outcome-relevant features of the environment. Here, we challe...

Descripción completa

Detalles Bibliográficos
Autores principales: Shahar, Nitzan, Moran, Rani, Hauser, Tobias U., Kievit, Rogier A., McNamee, Daniel, Moutoussis, Michael, Dolan, Raymond J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689934/
https://www.ncbi.nlm.nih.gov/pubmed/31320592
http://dx.doi.org/10.1073/pnas.1821647116
Descripción
Sumario:Model-free learning enables an agent to make better decisions based on prior experience while representing only minimal knowledge about an environment’s structure. It is generally assumed that model-free state representations are based on outcome-relevant features of the environment. Here, we challenge this assumption by providing evidence that a putative model-free system assigns credit to task representations that are irrelevant to an outcome. We examined data from 769 individuals performing a well-described 2-step reward decision task where stimulus identity but not spatial-motor aspects of the task predicted reward. We show that participants assigned value to spatial-motor representations despite it being outcome irrelevant. Strikingly, spatial-motor value associations affected behavior across all outcome-relevant features and stages of the task, consistent with credit assignment to low-level state-independent task representations. Individual difference analyses suggested that the impact of spatial-motor value formation was attenuated for individuals who showed greater deployment of goal-directed (model-based) strategies. Our findings highlight a need for a reconsideration of how model-free representations are formed and regulated according to the structure of the environment.