Cargando…
Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology
PURPOSE: As a tumor immunotherapy, allogeneic hematopoietic cell transplantation with subsequent donor lymphocyte injection (DLI) aims to induce the graft-versus-tumor (GVT) effect but often also leads to acute graft-versus-host disease (GVHD). Plasma tests that can predict the likelihood of GVT wit...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690359/ https://www.ncbi.nlm.nih.gov/pubmed/31406955 http://dx.doi.org/10.1200/PO.18.00365 |
_version_ | 1783443179928813568 |
---|---|
author | Liu, Xiaowen Yue, Zongliang Cao, Yimou Taylor, Lauren Zhang, Qing Choi, Sung W. Hanash, Samir Ito, Sawa Chen, Jake Y. Wu, Huanmei Paczesny, Sophie |
author_facet | Liu, Xiaowen Yue, Zongliang Cao, Yimou Taylor, Lauren Zhang, Qing Choi, Sung W. Hanash, Samir Ito, Sawa Chen, Jake Y. Wu, Huanmei Paczesny, Sophie |
author_sort | Liu, Xiaowen |
collection | PubMed |
description | PURPOSE: As a tumor immunotherapy, allogeneic hematopoietic cell transplantation with subsequent donor lymphocyte injection (DLI) aims to induce the graft-versus-tumor (GVT) effect but often also leads to acute graft-versus-host disease (GVHD). Plasma tests that can predict the likelihood of GVT without GVHD are still needed. PATIENTS AND METHODS: We first used an intact-protein analysis system to profile the plasma proteome post-DLI of patients who experienced GVT and acute GVHD for comparison with the proteome of patients who experienced GVT without GVHD in a training set. Our novel six-step systems biology analysis involved removing common proteins and GVHD-specific proteins, creating a protein-protein interaction network, calculating relevance and penalty scores, and visualizing candidate biomarkers in gene networks. We then performed a second proteomics experiment in a validation set of patients who experienced GVT without acute GVHD after DLI for comparison with the proteome of patients before DLI. We next combined the two experiments to define a biologically relevant signature of GVT without GVHD. An independent experiment with single-cell profiling in tumor antigen–activated T cells from a patient with post–hematopoietic cell transplantation relapse was performed. RESULTS: The approach provided a list of 46 proteins in the training set, and 30 proteins in the validation set were associated with GVT without GVHD. The combination of the two experiments defined a unique 61-protein signature of GVT without GVHD. Finally, the single-cell profiling in activated T cells found 43 of the 61 genes. Novel markers, such as RPL23, ILF2, CD58, and CRTAM, were identified and could be extended to other antitumoral responses. CONCLUSION: Our multiomic analysis provides, to our knowledge, the first human plasma signature for GVT without GVHD. Risk stratification on the basis of this signature would allow for customized treatment plans. |
format | Online Article Text |
id | pubmed-6690359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society of Clinical Oncology |
record_format | MEDLINE/PubMed |
spelling | pubmed-66903592019-08-12 Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology Liu, Xiaowen Yue, Zongliang Cao, Yimou Taylor, Lauren Zhang, Qing Choi, Sung W. Hanash, Samir Ito, Sawa Chen, Jake Y. Wu, Huanmei Paczesny, Sophie JCO Precis Oncol Original Report PURPOSE: As a tumor immunotherapy, allogeneic hematopoietic cell transplantation with subsequent donor lymphocyte injection (DLI) aims to induce the graft-versus-tumor (GVT) effect but often also leads to acute graft-versus-host disease (GVHD). Plasma tests that can predict the likelihood of GVT without GVHD are still needed. PATIENTS AND METHODS: We first used an intact-protein analysis system to profile the plasma proteome post-DLI of patients who experienced GVT and acute GVHD for comparison with the proteome of patients who experienced GVT without GVHD in a training set. Our novel six-step systems biology analysis involved removing common proteins and GVHD-specific proteins, creating a protein-protein interaction network, calculating relevance and penalty scores, and visualizing candidate biomarkers in gene networks. We then performed a second proteomics experiment in a validation set of patients who experienced GVT without acute GVHD after DLI for comparison with the proteome of patients before DLI. We next combined the two experiments to define a biologically relevant signature of GVT without GVHD. An independent experiment with single-cell profiling in tumor antigen–activated T cells from a patient with post–hematopoietic cell transplantation relapse was performed. RESULTS: The approach provided a list of 46 proteins in the training set, and 30 proteins in the validation set were associated with GVT without GVHD. The combination of the two experiments defined a unique 61-protein signature of GVT without GVHD. Finally, the single-cell profiling in activated T cells found 43 of the 61 genes. Novel markers, such as RPL23, ILF2, CD58, and CRTAM, were identified and could be extended to other antitumoral responses. CONCLUSION: Our multiomic analysis provides, to our knowledge, the first human plasma signature for GVT without GVHD. Risk stratification on the basis of this signature would allow for customized treatment plans. American Society of Clinical Oncology 2019-05-23 /pmc/articles/PMC6690359/ /pubmed/31406955 http://dx.doi.org/10.1200/PO.18.00365 Text en © 2019 by American Society of Clinical Oncology https://creativecommons.org/licenses/by/4.0/ Licensed under the Creative Commons Attribution 4.0 License: https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Report Liu, Xiaowen Yue, Zongliang Cao, Yimou Taylor, Lauren Zhang, Qing Choi, Sung W. Hanash, Samir Ito, Sawa Chen, Jake Y. Wu, Huanmei Paczesny, Sophie Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology |
title | Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology |
title_full | Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology |
title_fullStr | Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology |
title_full_unstemmed | Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology |
title_short | Graft-Versus-Host Disease–Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology |
title_sort | graft-versus-host disease–free antitumoral signature after allogeneic donor lymphocyte injection identified by proteomics and systems biology |
topic | Original Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690359/ https://www.ncbi.nlm.nih.gov/pubmed/31406955 http://dx.doi.org/10.1200/PO.18.00365 |
work_keys_str_mv | AT liuxiaowen graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT yuezongliang graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT caoyimou graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT taylorlauren graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT zhangqing graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT choisungw graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT hanashsamir graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT itosawa graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT chenjakey graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT wuhuanmei graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology AT paczesnysophie graftversushostdiseasefreeantitumoralsignatureafterallogeneicdonorlymphocyteinjectionidentifiedbyproteomicsandsystemsbiology |