Cargando…

Learning-accelerated discovery of immune-tumour interactions

We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other mul...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozik, Jonathan, Collier, Nicholson, Heiland, Randy, An, Gary, Macklin, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690424/
https://www.ncbi.nlm.nih.gov/pubmed/31497314
http://dx.doi.org/10.1039/c9me00036d
_version_ 1783443184372678656
author Ozik, Jonathan
Collier, Nicholson
Heiland, Randy
An, Gary
Macklin, Paul
author_facet Ozik, Jonathan
Collier, Nicholson
Heiland, Randy
An, Gary
Macklin, Paul
author_sort Ozik, Jonathan
collection PubMed
description We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other multicellular systems, and EMEWS, an open source platform for extreme-scale model exploration. We build an agent-based model of immunosurveillance against heterogeneous tumours, which includes spatial dynamics of stochastic tumour–immune contact interactions. We implement active learning and genetic algorithms using high-performance computing workflows to adaptively sample the model parameter space and iteratively discover optimal cancer regression regions within biological and clinical constraints.
format Online
Article
Text
id pubmed-6690424
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-66904242019-09-05 Learning-accelerated discovery of immune-tumour interactions Ozik, Jonathan Collier, Nicholson Heiland, Randy An, Gary Macklin, Paul Mol Syst Des Eng Chemistry We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other multicellular systems, and EMEWS, an open source platform for extreme-scale model exploration. We build an agent-based model of immunosurveillance against heterogeneous tumours, which includes spatial dynamics of stochastic tumour–immune contact interactions. We implement active learning and genetic algorithms using high-performance computing workflows to adaptively sample the model parameter space and iteratively discover optimal cancer regression regions within biological and clinical constraints. Royal Society of Chemistry 2019-08-01 2019-06-07 /pmc/articles/PMC6690424/ /pubmed/31497314 http://dx.doi.org/10.1039/c9me00036d Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Ozik, Jonathan
Collier, Nicholson
Heiland, Randy
An, Gary
Macklin, Paul
Learning-accelerated discovery of immune-tumour interactions
title Learning-accelerated discovery of immune-tumour interactions
title_full Learning-accelerated discovery of immune-tumour interactions
title_fullStr Learning-accelerated discovery of immune-tumour interactions
title_full_unstemmed Learning-accelerated discovery of immune-tumour interactions
title_short Learning-accelerated discovery of immune-tumour interactions
title_sort learning-accelerated discovery of immune-tumour interactions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690424/
https://www.ncbi.nlm.nih.gov/pubmed/31497314
http://dx.doi.org/10.1039/c9me00036d
work_keys_str_mv AT ozikjonathan learningaccelerateddiscoveryofimmunetumourinteractions
AT colliernicholson learningaccelerateddiscoveryofimmunetumourinteractions
AT heilandrandy learningaccelerateddiscoveryofimmunetumourinteractions
AT angary learningaccelerateddiscoveryofimmunetumourinteractions
AT macklinpaul learningaccelerateddiscoveryofimmunetumourinteractions