Cargando…
Learning-accelerated discovery of immune-tumour interactions
We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other mul...
Autores principales: | Ozik, Jonathan, Collier, Nicholson, Heiland, Randy, An, Gary, Macklin, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690424/ https://www.ncbi.nlm.nih.gov/pubmed/31497314 http://dx.doi.org/10.1039/c9me00036d |
Ejemplares similares
-
High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow
por: Ozik, Jonathan, et al.
Publicado: (2018) -
Benchmarking the acceleration of materials discovery by sequential learning
por: Rohr, Brian, et al.
Publicado: (2020) -
Proxy-based accelerated discovery of Fischer–Tropsch catalysts
por: Boldrin, Paul, et al.
Publicado: (2015) -
Sequentially calibrating a Bayesian microsimulation model to incorporate new information and assumptions
por: DeYoreo, Maria, et al.
Publicado: (2022) -
A Review of Cell-Based Computational Modeling in Cancer Biology
por: Metzcar, John, et al.
Publicado: (2019)