Cargando…

2-Methyl-4-(4-nitro­phen­yl)but-3-yn-2-ol: crystal structure, Hirshfeld surface analysis and computational chemistry study

The di-substituted acetyl­ene residue in the title compound, C(11)H(11)NO(3), is capped at either end by di-methyl­hydroxy and 4-nitro­benzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the mol­...

Descripción completa

Detalles Bibliográficos
Autores principales: Caracelli, Ignez, Zukerman-Schpector, Julio, Schwab, Ricardo S., da Silva, Everton M., Jotani, Mukesh M., Tiekink, Edward R. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690440/
https://www.ncbi.nlm.nih.gov/pubmed/31417798
http://dx.doi.org/10.1107/S2056989019010284
Descripción
Sumario:The di-substituted acetyl­ene residue in the title compound, C(11)H(11)NO(3), is capped at either end by di-methyl­hydroxy and 4-nitro­benzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the mol­ecular packing is the formation, via hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds, of hexa­meric clusters about a site of symmetry [Image: see text]. The aggregates are sustained by 12-membered {⋯OH}(6) synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C—H⋯O(nitro) inter­actions, involving both nitro-O atoms. The aforementioned inter­actions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker inter­molecular contacts.