Cargando…

MicroRNA-34a/IL-6R pathway as a potential therapeutic target for ovarian high-grade serous carcinoma

Accumulating evidence has indicated that microRNAs play a critical role in the pathogenesis of human cancers. microRNA-34a (miR-34a) has been shown to be a key regulator of tumor suppression by targeting several cancer-related signals, including the interleukin-6 receptor (IL-6R)/Signal Transducers...

Descripción completa

Detalles Bibliográficos
Autores principales: Yokomizo, Ryo, Yanaihara, Nozomu, Yamaguchi, Noriko, Saito, Misato, Kawabata, Ayako, Takahashi, Kazuaki, Takenaka, Masataka, Yamada, Kyosuke, Shapiro, Jason Solomon, Okamoto, Aikou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690672/
https://www.ncbi.nlm.nih.gov/pubmed/31448054
http://dx.doi.org/10.18632/oncotarget.27117
Descripción
Sumario:Accumulating evidence has indicated that microRNAs play a critical role in the pathogenesis of human cancers. microRNA-34a (miR-34a) has been shown to be a key regulator of tumor suppression by targeting several cancer-related signals, including the interleukin-6 receptor (IL-6R)/Signal Transducers and Activator of Transcription 3 (STAT3) signaling pathway. Previously, we determined that miR-34a expression was frequently reduced in high-grade serous carcinoma (HGSC), the major subtype of epithelial ovarian cancer (EOC). Considering that the IL-6R/STAT3 signaling pathway is upregulated and believed to be a potential therapeutic target in EOC, we investigated the biological significance of reduced miR-34a expression in HGSC with regard to IL-6R signaling. Additionally, we evaluated the viability of miR-34a as a therapeutic application for HGSC both in vitro and in vivo. Accordingly, we found that the ectopic expression of miR-34a significantly reduced tumor proliferation and invasion through downregulation of IL-6R expression, suggesting that reduced miR-34a expression might play an important role in the malignant potential of HGSC through upregulation of the IL-6R/STAT3 signaling pathway. Moreover, we demonstrated that replacement of miR-34a reduced tumorigenicity of HGSC in vivo. Therefore, this study may provide the rationale for miR-34a replacement as a promising therapeutic strategy for HGSC.