Cargando…
Partial Reconstruction of the Nigrostriatal Circuit along a Preformed Molecular Guidance Pathway
The overall goal of our research is to establish a preformed molecular guidance pathway to direct the growth of dopaminergic axons from embryonic ventral mesencephalon (VM), tissue placed within the substantia nigra (SN), into the striatum to reconstruct the nigrostriatal pathway in a hemi-Parkinson...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690717/ https://www.ncbi.nlm.nih.gov/pubmed/31417940 http://dx.doi.org/10.1016/j.omtm.2019.06.008 |
Sumario: | The overall goal of our research is to establish a preformed molecular guidance pathway to direct the growth of dopaminergic axons from embryonic ventral mesencephalon (VM), tissue placed within the substantia nigra (SN), into the striatum to reconstruct the nigrostriatal pathway in a hemi-Parkinson’s disease rat model. Guidance pathways were prepared by injecting lentivirus encoding either GFP or a combination of glial-cell-line-derived neurotrophic factor (GDNF) with either GDNF family receptor α1 (GFRα1) or netrin1. In another cohort of animals, adeno-associated virus (AAV) encoding brain-derived neurotrophic factor (BDNF) was injected within the striatum after guidance pathway formation. GDNF combined with either GFRα1 or netrin significantly increased growth of dopaminergic axons out of transplants and along the pathway, resulting in a significant reduction in the number of amphetamine-induced rotations. Retrograde tract tracing showed that the dopaminergic axons innervating the striatum were from A9 neurons within the transplant. Increased dopaminergic innervation of the striatum and improved behavioral recovery were observed with the addition of BDNF. Preformed guidance pathways using a combination of GDNF and netrin1 can be used to reconstruct the nigrostriatal pathway and improve motor recovery. |
---|