Cargando…
Learning with Known Operators reduces Maximum Training Error Bounds
We describe an approach for incorporating prior knowledge into machine learning algorithms. We aim at applications in physics and signal processing in which we know that certain operations must be embedded into the algorithm. Any operation that allows computation of a gradient or sub-gradient toward...
Autores principales: | Maier, Andreas K., Syben, Christopher, Stimpel, Bernhard, Würfl, Tobias, Hoffmann, Mathis, Schebesch, Frank, Fu, Weilin, Mill, Leonid, Kling, Lasse, Christiansen, Silke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690833/ https://www.ncbi.nlm.nih.gov/pubmed/31406960 http://dx.doi.org/10.1038/s42256-019-0077-5 |
Ejemplares similares
-
Projection-to-Projection Translation for Hybrid X-ray and Magnetic Resonance Imaging
por: Stimpel, Bernhard, et al.
Publicado: (2019) -
Technical Note: PYRO‐NN: Python reconstruction operators in neural networks
por: Syben, Christopher, et al.
Publicado: (2019) -
Maximum common subgraph: some upper bound and lower bound results
por: Huang, Xiuzhen, et al.
Publicado: (2006) -
Information bounds and nonparametric maximum likelihood estimation
por: Groeneboom, Piet, et al.
Publicado: (1992) -
Detection of pitch errors in well-known songs
por: Weiss, Michael W, et al.
Publicado: (2022)