Cargando…
Binarized Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern Classification
In the biological neural network, the learning process is achieved through massively parallel synaptic connections between neurons that can be adjusted in an analog manner. Recent developments in emerging synaptic devices and their networks can emulate the functionality of a biological neural networ...
Autores principales: | Kim, Sungho, Choi, Bongsik, Yoon, Jinsu, Lee, Yongwoo, Kim, Hee-Dong, Kang, Min-Ho, Choi, Sung-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690903/ https://www.ncbi.nlm.nih.gov/pubmed/31406242 http://dx.doi.org/10.1038/s41598-019-48048-w |
Ejemplares similares
-
Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network
por: Kim, Sungho, et al.
Publicado: (2019) -
Determination of individual contact interfaces in carbon nanotube network-based transistors
por: Yoon, Jinsu, et al.
Publicado: (2017) -
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet
por: Kim, Chang-Hyun, et al.
Publicado: (2016) -
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
por: Lee, Jieun, et al.
Publicado: (2015)