Cargando…
Light needle microscopy with spatially transposed detection for axially resolved volumetric imaging
The demand for rapid three-dimensional volumetric imaging is increasing in various fields, including life science. Laser scanning fluorescence microscopy has been widely employed for this purpose; however, a volumetric image is constructed by two-dimensional image stacking with a varying observation...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690918/ https://www.ncbi.nlm.nih.gov/pubmed/31406209 http://dx.doi.org/10.1038/s41598-019-48265-3 |
Sumario: | The demand for rapid three-dimensional volumetric imaging is increasing in various fields, including life science. Laser scanning fluorescence microscopy has been widely employed for this purpose; however, a volumetric image is constructed by two-dimensional image stacking with a varying observation plane, ultimately limiting the acquisition speed. Here we propose a method enabling axially resolved volumetric imaging without a moving observation plane in the framework of laser scanning microscopy. A scanning light needle spot with an extended focal depth provides excitation, which normally produces a deep focus image with a loss of depth information. In our method, the depth information is retrieved from transposed lateral information on an array detector by utilising non-diffracting and self-bending characteristics imposed on fluorescent signals. This technique, implemented in two-photon microscopy, achieves truly volumetric images constructed from a single raster scan of a light needle, which has the capability to significantly reduce the acquisition time. |
---|