Cargando…

Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the associati...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Spek, Ashley, Broer, Linda, Draisma, Harmen H. M., Pool, René, Albrecht, Eva, Beekman, Marian, Mangino, Massimo, Raag, Mait, Nyholt, Dale R., Dharuri, Harish K., Codd, Veryan, Amin, Najaf, de Geus, Eco J. C., Deelen, Joris, Demirkan, Ayse, Yet, Idil, Fischer, Krista, Haller, Toomas, Henders, Anjali K., Isaacs, Aaron, Medland, Sarah E., Montgomery, Grant W., Mooijaart, Simon P., Strauch, Konstantin, Suchiman, H. Eka D., Vaarhorst, Anika A. M., van Heemst, Diana, Wang-Sattler, Rui, Whitfield, John B., Willemsen, Gonneke, Wright, Margaret J., Martin, Nicholas G., Samani, Nilesh J., Metspalu, Andres, Eline Slagboom, P., Spector, Tim D., Boomsma, Dorret I., van Duijn, Cornelia M., Gieger, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690953/
https://www.ncbi.nlm.nih.gov/pubmed/31406173
http://dx.doi.org/10.1038/s41598-019-47282-6
_version_ 1783443263297945600
author van der Spek, Ashley
Broer, Linda
Draisma, Harmen H. M.
Pool, René
Albrecht, Eva
Beekman, Marian
Mangino, Massimo
Raag, Mait
Nyholt, Dale R.
Dharuri, Harish K.
Codd, Veryan
Amin, Najaf
de Geus, Eco J. C.
Deelen, Joris
Demirkan, Ayse
Yet, Idil
Fischer, Krista
Haller, Toomas
Henders, Anjali K.
Isaacs, Aaron
Medland, Sarah E.
Montgomery, Grant W.
Mooijaart, Simon P.
Strauch, Konstantin
Suchiman, H. Eka D.
Vaarhorst, Anika A. M.
van Heemst, Diana
Wang-Sattler, Rui
Whitfield, John B.
Willemsen, Gonneke
Wright, Margaret J.
Martin, Nicholas G.
Samani, Nilesh J.
Metspalu, Andres
Eline Slagboom, P.
Spector, Tim D.
Boomsma, Dorret I.
van Duijn, Cornelia M.
Gieger, Christian
author_facet van der Spek, Ashley
Broer, Linda
Draisma, Harmen H. M.
Pool, René
Albrecht, Eva
Beekman, Marian
Mangino, Massimo
Raag, Mait
Nyholt, Dale R.
Dharuri, Harish K.
Codd, Veryan
Amin, Najaf
de Geus, Eco J. C.
Deelen, Joris
Demirkan, Ayse
Yet, Idil
Fischer, Krista
Haller, Toomas
Henders, Anjali K.
Isaacs, Aaron
Medland, Sarah E.
Montgomery, Grant W.
Mooijaart, Simon P.
Strauch, Konstantin
Suchiman, H. Eka D.
Vaarhorst, Anika A. M.
van Heemst, Diana
Wang-Sattler, Rui
Whitfield, John B.
Willemsen, Gonneke
Wright, Margaret J.
Martin, Nicholas G.
Samani, Nilesh J.
Metspalu, Andres
Eline Slagboom, P.
Spector, Tim D.
Boomsma, Dorret I.
van Duijn, Cornelia M.
Gieger, Christian
author_sort van der Spek, Ashley
collection PubMed
description Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10(−6)), methionine (p-value = 9.2 × 10(−5)), tyrosine (p-value = 2.1 × 10(−4)), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10(−4)), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10(−4)), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10(−4)). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.
format Online
Article
Text
id pubmed-6690953
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66909532019-08-15 Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium van der Spek, Ashley Broer, Linda Draisma, Harmen H. M. Pool, René Albrecht, Eva Beekman, Marian Mangino, Massimo Raag, Mait Nyholt, Dale R. Dharuri, Harish K. Codd, Veryan Amin, Najaf de Geus, Eco J. C. Deelen, Joris Demirkan, Ayse Yet, Idil Fischer, Krista Haller, Toomas Henders, Anjali K. Isaacs, Aaron Medland, Sarah E. Montgomery, Grant W. Mooijaart, Simon P. Strauch, Konstantin Suchiman, H. Eka D. Vaarhorst, Anika A. M. van Heemst, Diana Wang-Sattler, Rui Whitfield, John B. Willemsen, Gonneke Wright, Margaret J. Martin, Nicholas G. Samani, Nilesh J. Metspalu, Andres Eline Slagboom, P. Spector, Tim D. Boomsma, Dorret I. van Duijn, Cornelia M. Gieger, Christian Sci Rep Article Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10(−6)), methionine (p-value = 9.2 × 10(−5)), tyrosine (p-value = 2.1 × 10(−4)), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10(−4)), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10(−4)), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10(−4)). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality. Nature Publishing Group UK 2019-08-12 /pmc/articles/PMC6690953/ /pubmed/31406173 http://dx.doi.org/10.1038/s41598-019-47282-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
van der Spek, Ashley
Broer, Linda
Draisma, Harmen H. M.
Pool, René
Albrecht, Eva
Beekman, Marian
Mangino, Massimo
Raag, Mait
Nyholt, Dale R.
Dharuri, Harish K.
Codd, Veryan
Amin, Najaf
de Geus, Eco J. C.
Deelen, Joris
Demirkan, Ayse
Yet, Idil
Fischer, Krista
Haller, Toomas
Henders, Anjali K.
Isaacs, Aaron
Medland, Sarah E.
Montgomery, Grant W.
Mooijaart, Simon P.
Strauch, Konstantin
Suchiman, H. Eka D.
Vaarhorst, Anika A. M.
van Heemst, Diana
Wang-Sattler, Rui
Whitfield, John B.
Willemsen, Gonneke
Wright, Margaret J.
Martin, Nicholas G.
Samani, Nilesh J.
Metspalu, Andres
Eline Slagboom, P.
Spector, Tim D.
Boomsma, Dorret I.
van Duijn, Cornelia M.
Gieger, Christian
Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium
title Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium
title_full Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium
title_fullStr Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium
title_full_unstemmed Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium
title_short Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium
title_sort metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the engage consortium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690953/
https://www.ncbi.nlm.nih.gov/pubmed/31406173
http://dx.doi.org/10.1038/s41598-019-47282-6
work_keys_str_mv AT vanderspekashley metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT broerlinda metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT draismaharmenhm metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT poolrene metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT albrechteva metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT beekmanmarian metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT manginomassimo metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT raagmait metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT nyholtdaler metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT dharuriharishk metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT coddveryan metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT aminnajaf metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT degeusecojc metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT deelenjoris metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT demirkanayse metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT yetidil metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT fischerkrista metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT hallertoomas metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT hendersanjalik metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT isaacsaaron metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT medlandsarahe metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT montgomerygrantw metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT mooijaartsimonp metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT strauchkonstantin metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT suchimanhekad metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT vaarhorstanikaam metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT vanheemstdiana metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT wangsattlerrui metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT whitfieldjohnb metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT willemsengonneke metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT wrightmargaretj metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT martinnicholasg metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT samaninileshj metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT metspaluandres metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT elineslagboomp metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT spectortimd metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT boomsmadorreti metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT vanduijncorneliam metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium
AT giegerchristian metabolomicsrevealsalinkbetweenhomocysteineandlipidmetabolismandleukocytetelomerelengththeengageconsortium