Cargando…

Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks

Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption...

Descripción completa

Detalles Bibliográficos
Autores principales: Krause, Simon, Evans, Jack D., Bon, Volodymyr, Senkovska, Irena, Iacomi, Paul, Kolbe, Felicitas, Ehrling, Sebastian, Troschke, Erik, Getzschmann, Jürgen, Többens, Daniel M., Franz, Alexandra, Wallacher, Dirk, Yot, Pascal G., Maurin, Guillaume, Brunner, Eike, Llewellyn, Philip L., Coudert, François-Xavier, Kaskel, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690989/
https://www.ncbi.nlm.nih.gov/pubmed/31406113
http://dx.doi.org/10.1038/s41467-019-11565-3
_version_ 1783443271938211840
author Krause, Simon
Evans, Jack D.
Bon, Volodymyr
Senkovska, Irena
Iacomi, Paul
Kolbe, Felicitas
Ehrling, Sebastian
Troschke, Erik
Getzschmann, Jürgen
Többens, Daniel M.
Franz, Alexandra
Wallacher, Dirk
Yot, Pascal G.
Maurin, Guillaume
Brunner, Eike
Llewellyn, Philip L.
Coudert, François-Xavier
Kaskel, Stefan
author_facet Krause, Simon
Evans, Jack D.
Bon, Volodymyr
Senkovska, Irena
Iacomi, Paul
Kolbe, Felicitas
Ehrling, Sebastian
Troschke, Erik
Getzschmann, Jürgen
Többens, Daniel M.
Franz, Alexandra
Wallacher, Dirk
Yot, Pascal G.
Maurin, Guillaume
Brunner, Eike
Llewellyn, Philip L.
Coudert, François-Xavier
Kaskel, Stefan
author_sort Krause, Simon
collection PubMed
description Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption (NGA), a counterintuitive feature of pressure amplifying materials, hitherto uniquely observed in a highly porous framework compound (DUT-49). These criteria are derived by analysing the physical effects of micromechanics, pore size, interpenetration, adsorption enthalpies, and the pore filling mechanism using advanced in situ X-ray and neutron diffraction, NMR spectroscopy, and calorimetric techniques parallelised to adsorption for a series of six isoreticular networks. Aided by computational modelling, we identify DUT-50 as a new pressure amplifying material featuring distinct NGA transitions upon methane and argon adsorption. In situ neutron diffraction analysis of the methane (CD(4)) adsorption sites at 111 K supported by grand canonical Monte Carlo simulations reveals a sudden population of the largest mesopore to be the critical filling step initiating structural contraction and NGA. In contrast, interpenetration leads to framework stiffening and specific pore volume reduction, both factors effectively suppressing NGA transitions.
format Online
Article
Text
id pubmed-6690989
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66909892019-08-14 Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks Krause, Simon Evans, Jack D. Bon, Volodymyr Senkovska, Irena Iacomi, Paul Kolbe, Felicitas Ehrling, Sebastian Troschke, Erik Getzschmann, Jürgen Többens, Daniel M. Franz, Alexandra Wallacher, Dirk Yot, Pascal G. Maurin, Guillaume Brunner, Eike Llewellyn, Philip L. Coudert, François-Xavier Kaskel, Stefan Nat Commun Article Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption (NGA), a counterintuitive feature of pressure amplifying materials, hitherto uniquely observed in a highly porous framework compound (DUT-49). These criteria are derived by analysing the physical effects of micromechanics, pore size, interpenetration, adsorption enthalpies, and the pore filling mechanism using advanced in situ X-ray and neutron diffraction, NMR spectroscopy, and calorimetric techniques parallelised to adsorption for a series of six isoreticular networks. Aided by computational modelling, we identify DUT-50 as a new pressure amplifying material featuring distinct NGA transitions upon methane and argon adsorption. In situ neutron diffraction analysis of the methane (CD(4)) adsorption sites at 111 K supported by grand canonical Monte Carlo simulations reveals a sudden population of the largest mesopore to be the critical filling step initiating structural contraction and NGA. In contrast, interpenetration leads to framework stiffening and specific pore volume reduction, both factors effectively suppressing NGA transitions. Nature Publishing Group UK 2019-08-12 /pmc/articles/PMC6690989/ /pubmed/31406113 http://dx.doi.org/10.1038/s41467-019-11565-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Krause, Simon
Evans, Jack D.
Bon, Volodymyr
Senkovska, Irena
Iacomi, Paul
Kolbe, Felicitas
Ehrling, Sebastian
Troschke, Erik
Getzschmann, Jürgen
Többens, Daniel M.
Franz, Alexandra
Wallacher, Dirk
Yot, Pascal G.
Maurin, Guillaume
Brunner, Eike
Llewellyn, Philip L.
Coudert, François-Xavier
Kaskel, Stefan
Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
title Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
title_full Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
title_fullStr Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
title_full_unstemmed Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
title_short Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
title_sort towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690989/
https://www.ncbi.nlm.nih.gov/pubmed/31406113
http://dx.doi.org/10.1038/s41467-019-11565-3
work_keys_str_mv AT krausesimon towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT evansjackd towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT bonvolodymyr towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT senkovskairena towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT iacomipaul towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT kolbefelicitas towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT ehrlingsebastian towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT troschkeerik towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT getzschmannjurgen towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT tobbensdanielm towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT franzalexandra towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT wallacherdirk towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT yotpascalg towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT mauringuillaume towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT brunnereike towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT llewellynphilipl towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT coudertfrancoisxavier towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks
AT kaskelstefan towardsgeneralnetworkarchitecturedesigncriteriafornegativegasadsorptiontransitionsinultraporousframeworks