Cargando…
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks
Spiking Neural Networks (SNNs) offer great potential to promote both the performance and efficiency of real-world computing systems, considering the biological plausibility of SNNs. The emerging analog Resistive Random Access Memory (RRAM) devices have drawn increasing interest as potential neuromor...
Autores principales: | Guo, Yilong, Wu, Huaqiang, Gao, Bin, Qian, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691091/ https://www.ncbi.nlm.nih.gov/pubmed/31447634 http://dx.doi.org/10.3389/fnins.2019.00812 |
Ejemplares similares
-
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
por: She, Xueyuan, et al.
Publicado: (2021) -
Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks
por: Zhang, Wenrui, et al.
Publicado: (2019) -
Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks
por: Brivio, Stefano, et al.
Publicado: (2021) -
Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2016)