Cargando…

Genetic decline, restoration and rescue of an isolated ungulate population

Isolation of small populations is expected to reduce fitness through inbreeding and loss of genetic variation, impeding population growth and compromising population persistence. Species with long generation time are the least likely to be rescued by evolution alone. Management interventions that ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Poirier, Marc‐Antoine, Coltman, David W., Pelletier, Fanie, Jorgenson, Jon, Festa‐Bianchet, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691324/
https://www.ncbi.nlm.nih.gov/pubmed/31417617
http://dx.doi.org/10.1111/eva.12706
Descripción
Sumario:Isolation of small populations is expected to reduce fitness through inbreeding and loss of genetic variation, impeding population growth and compromising population persistence. Species with long generation time are the least likely to be rescued by evolution alone. Management interventions that maintain or restore genetic variation to assure population viability are consequently of significant importance. We investigated, over 27 years, the genetic and demographic consequences of a demographic bottleneck followed by artificial supplementation in an isolated population of bighorn sheep (Ovis canadensis). Based on a long‐term pedigree and individual monitoring, we documented the genetic decline, restoration and rescue of the population. Microsatellite analyses revealed that the demographic bottleneck reduced expected heterozygosity and allelic diversity by 6.2% and 11.3%, respectively, over two generations. Following supplementation, first‐generation admixed lambs were 6.4% heavier at weaning and had 28.3% higher survival to 1 year compared to lambs of endemic ancestry. Expected heterozygosity and allelic diversity increased by 4.6% and 14.3% after two generations through new alleles contributed by translocated individuals. We found no evidence for outbreeding depression and did not see immediate evidence of swamping of local genes. Rapid intervention following the demographic bottleneck allowed the genetic restoration and rescue of this bighorn sheep population, likely preventing further losses at both the genetic and demographic levels. Our results provide further empirical evidence that translocation can be used to reduce inbreeding depression in nature and has the potential to mitigate the effect of human‐driven environmental changes on wild populations.