Cargando…
DeepPhos: prediction of protein phosphorylation sites with deep learning
MOTIVATION: Phosphorylation is the most studied post-translational modification, which is crucial for multiple biological processes. Recently, many efforts have been taken to develop computational predictors for phosphorylation site prediction, but most of them are based on feature selection and dis...
Autores principales: | Luo, Fenglin, Wang, Minghui, Liu, Yu, Zhao, Xing-Ming, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691328/ https://www.ncbi.nlm.nih.gov/pubmed/30601936 http://dx.doi.org/10.1093/bioinformatics/bty1051 |
Ejemplares similares
-
PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein–protein interaction information
por: Yang, Hangyuan, et al.
Publicado: (2021) -
PhosVarDeep: deep-learning based prediction of phospho-variants using sequence information
por: Liu, Xia, et al.
Publicado: (2022) -
PhosTransfer: A Deep Transfer Learning Framework for Kinase-Specific Phosphorylation Site Prediction in Hierarchy
por: Xu, Ying, et al.
Publicado: (2020) -
TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture
por: Wang, Xun, et al.
Publicado: (2022) -
PredPhos: an ensemble framework for structure-based prediction of phosphorylation sites
por: Gao, Yong, et al.
Publicado: (2016)