Cargando…
M3Drop: dropout-based feature selection for scRNASeq
MOTIVATION: Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical n...
Autores principales: | Andrews, Tallulah S, Hemberg, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691329/ https://www.ncbi.nlm.nih.gov/pubmed/30590489 http://dx.doi.org/10.1093/bioinformatics/bty1044 |
Ejemplares similares
-
Pseudoalignment tools as an efficient alternative to detect repeated transposable elements in scRNAseq data
por: de Villarreal, Jaime Martínez, et al.
Publicado: (2022) -
The Arc of Astrocyte Aging: Insights From scRNAseq
por: Meer, Margarita, et al.
Publicado: (2021) -
Developmental scRNAseq Trajectories in Gene- and Cell-State Space—The Flatworm Example
por: Schmidt, Maria, et al.
Publicado: (2020) -
Insights Gained and Future Outlook From scRNAseq Studies in Autoimmune Rheumatic Diseases
por: Zheng, Zihan, et al.
Publicado: (2022) -
Single-cell Iso-Sequencing enables rapid genome annotation for scRNAseq analysis
por: Healey, Hope M, et al.
Publicado: (2022)