Cargando…
BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes
To fully utilize the power of single-cell RNA sequencing (scRNA-seq) technologies for identifying cell lineages and bona fide transcriptional signals, it is necessary to combine data from multiple experiments. We present BERMUDA (Batch Effect ReMoval Using Deep Autoencoders), a novel transfer-learni...
Autores principales: | Wang, Tongxin, Johnson, Travis S., Shao, Wei, Lu, Zixiao, Helm, Bryan R., Zhang, Jie, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691531/ https://www.ncbi.nlm.nih.gov/pubmed/31405383 http://dx.doi.org/10.1186/s13059-019-1764-6 |
Ejemplares similares
-
Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
por: Johnson, Travis S., et al.
Publicado: (2022) -
On Diphtheria in Bermuda
por: Smart,
Publicado: (1867) -
On the Arrow-Root of Bermuda
por: Cogswell, Charles
Publicado: (1845) -
Yellow Fever at Bermuda
Publicado: (1864) -
Hidden Markov models lead to higher resolution maps of mutation signature activity in cancer
por: Wojtowicz, Damian, et al.
Publicado: (2019)