Cargando…

Systematic misperceptions of 3-D motion explained by Bayesian inference

People make surprising but reliable perceptual errors. Here, we provide a unified explanation for systematic errors in the perception of three-dimensional (3-D) motion. To do so, we characterized the binocular retinal motion signals produced by objects moving through arbitrary locations in 3-D. Next...

Descripción completa

Detalles Bibliográficos
Autores principales: Rokers, Bas, Fulvio, Jacqueline M., Pillow, Jonathan W., Cooper, Emily A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691918/
https://www.ncbi.nlm.nih.gov/pubmed/29677339
http://dx.doi.org/10.1167/18.3.23
_version_ 1783443474900582400
author Rokers, Bas
Fulvio, Jacqueline M.
Pillow, Jonathan W.
Cooper, Emily A.
author_facet Rokers, Bas
Fulvio, Jacqueline M.
Pillow, Jonathan W.
Cooper, Emily A.
author_sort Rokers, Bas
collection PubMed
description People make surprising but reliable perceptual errors. Here, we provide a unified explanation for systematic errors in the perception of three-dimensional (3-D) motion. To do so, we characterized the binocular retinal motion signals produced by objects moving through arbitrary locations in 3-D. Next, we developed a Bayesian model, treating 3-D motion perception as optimal inference given sensory noise in the measurement of retinal motion. The model predicts a set of systematic perceptual errors, which depend on stimulus distance, contrast, and eccentricity. We then used a virtual-reality headset as well as a standard 3-D desktop stereoscopic display to test these predictions in a series of perceptual experiments. As predicted, we found evidence that errors in 3-D motion perception depend on the contrast, viewing distance, and eccentricity of a stimulus. These errors include a lateral bias in perceived motion direction and a surprising tendency to misreport approaching motion as receding and vice versa. In sum, we present a Bayesian model that provides a parsimonious account for a range of systematic misperceptions of motion in naturalistic environments.
format Online
Article
Text
id pubmed-6691918
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-66919182019-08-14 Systematic misperceptions of 3-D motion explained by Bayesian inference Rokers, Bas Fulvio, Jacqueline M. Pillow, Jonathan W. Cooper, Emily A. J Vis Article People make surprising but reliable perceptual errors. Here, we provide a unified explanation for systematic errors in the perception of three-dimensional (3-D) motion. To do so, we characterized the binocular retinal motion signals produced by objects moving through arbitrary locations in 3-D. Next, we developed a Bayesian model, treating 3-D motion perception as optimal inference given sensory noise in the measurement of retinal motion. The model predicts a set of systematic perceptual errors, which depend on stimulus distance, contrast, and eccentricity. We then used a virtual-reality headset as well as a standard 3-D desktop stereoscopic display to test these predictions in a series of perceptual experiments. As predicted, we found evidence that errors in 3-D motion perception depend on the contrast, viewing distance, and eccentricity of a stimulus. These errors include a lateral bias in perceived motion direction and a surprising tendency to misreport approaching motion as receding and vice versa. In sum, we present a Bayesian model that provides a parsimonious account for a range of systematic misperceptions of motion in naturalistic environments. The Association for Research in Vision and Ophthalmology 2018-03-29 /pmc/articles/PMC6691918/ /pubmed/29677339 http://dx.doi.org/10.1167/18.3.23 Text en Copyright 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Rokers, Bas
Fulvio, Jacqueline M.
Pillow, Jonathan W.
Cooper, Emily A.
Systematic misperceptions of 3-D motion explained by Bayesian inference
title Systematic misperceptions of 3-D motion explained by Bayesian inference
title_full Systematic misperceptions of 3-D motion explained by Bayesian inference
title_fullStr Systematic misperceptions of 3-D motion explained by Bayesian inference
title_full_unstemmed Systematic misperceptions of 3-D motion explained by Bayesian inference
title_short Systematic misperceptions of 3-D motion explained by Bayesian inference
title_sort systematic misperceptions of 3-d motion explained by bayesian inference
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691918/
https://www.ncbi.nlm.nih.gov/pubmed/29677339
http://dx.doi.org/10.1167/18.3.23
work_keys_str_mv AT rokersbas systematicmisperceptionsof3dmotionexplainedbybayesianinference
AT fulviojacquelinem systematicmisperceptionsof3dmotionexplainedbybayesianinference
AT pillowjonathanw systematicmisperceptionsof3dmotionexplainedbybayesianinference
AT cooperemilya systematicmisperceptionsof3dmotionexplainedbybayesianinference