Cargando…
Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure
DNA molecules are highly compacted in the eukaryotic nucleus where distal regulatory elements reach their targets through three-dimensional chromosomal interactions. G-quadruplexes, stable four-stranded non-canonical DNA structures, can change local chromatin organization through the exclusion of nu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691997/ https://www.ncbi.nlm.nih.gov/pubmed/31177910 http://dx.doi.org/10.1080/15592294.2019.1621140 |
Sumario: | DNA molecules are highly compacted in the eukaryotic nucleus where distal regulatory elements reach their targets through three-dimensional chromosomal interactions. G-quadruplexes, stable four-stranded non-canonical DNA structures, can change local chromatin organization through the exclusion of nucleosomes. However, the relationship between G-quadruplexes and higher-order genome organization remains unknown. Here, we found that G-quadruplexes are significantly enriched at boundaries of topological associated domains (TADs). Architectural protein occupancy, which plays critical roles in the formation of TADs, was highly correlated with the content of G-quadruplexes at TAD boundaries. Moreover, adjacent boundaries containing G-quadruplexes frequently interacted with each other because of the high enrichment of architectural protein binding sites. Similar to CCCTC-binding factor (CTCF) binding sites, G-quadruplexes also showed strong insulation ability in the separation of adjacent regions. Additionally, the insulation ability of CTCF binding sites and TAD boundaries was significantly reinforced by G-quadruplexes. Furthermore, G-quadruplex motifs on different strands were associated with the orientation of CTCF binding sites. These findings suggest a potential role for G-quadruplexes in loop extrusion. The enrichment of transcription factor binding sites (TFBSs) around regulatory elements containing G-quadruplexes led to frequent interactions between regulatory elements containing G-quadruplexes. Intriguingly, more than 99% of G-quadruplexes overlapped with TFBSs. The binding sites of CTCF and cohesin proteins were preferentially located surrounding G-quadruplexes. Accordingly, we proposed a new mechanism of long-distance gene regulation in which G-quadruplexes are involved in distal interactions between enhancers and promoters. |
---|