Cargando…

Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel

Repeated exposure to blast overpressure remains a major cause of adverse health for military personnel who, as a consequence, are at a higher risk for neurodegenerative disease and suicide. Acute, early tracking of blast related effects holds the promise of rapid health assessment prior to onset of...

Descripción completa

Detalles Bibliográficos
Autores principales: Boutté, Angela M., Thangavelu, Bharani, LaValle, Christina R., Nemes, Jeffrey, Gilsdorf, Janice, Shear, Deborah A., Kamimori, Gary H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692016/
https://www.ncbi.nlm.nih.gov/pubmed/31408492
http://dx.doi.org/10.1371/journal.pone.0221036
_version_ 1783443490454110208
author Boutté, Angela M.
Thangavelu, Bharani
LaValle, Christina R.
Nemes, Jeffrey
Gilsdorf, Janice
Shear, Deborah A.
Kamimori, Gary H.
author_facet Boutté, Angela M.
Thangavelu, Bharani
LaValle, Christina R.
Nemes, Jeffrey
Gilsdorf, Janice
Shear, Deborah A.
Kamimori, Gary H.
author_sort Boutté, Angela M.
collection PubMed
description Repeated exposure to blast overpressure remains a major cause of adverse health for military personnel who, as a consequence, are at a higher risk for neurodegenerative disease and suicide. Acute, early tracking of blast related effects holds the promise of rapid health assessment prior to onset of chronic problems. Current techniques used to determine blast-related effects rely upon reporting of symptomology similar to that of concussion and neurocognitive assessment relevant to operational decrement. Here, we describe the results of a cross sectional study with pared observations. The concentration of multiple TBI-related proteins was tested in serum collected within one hour of blast exposure as a quantitative and minimally invasive strategy to augment assessment of blast-exposure effects that are associated with concussion-like symptomology and reaction time decrements. We determined that median simple reaction time (SRT) was slowed in accordance with serum Nf-L, tau, Aβ-40, and Aβ-42 elevation after overpressure exposure. In contrast, median levels of serum GFAP decreased. Individual, inter-subject analysis revealed positive correlations between changes in Nf-L and GFAP, and in Aβ-40 compared to Aβ-42. The change in Nf-L was negatively associated with tau, Aβ-40, and Aβ-42. Participants reported experiencing headaches, dizziness and taking longer to think. Dizziness was associated with reaction time decrements, GFAP or NfL suppression, as well as Aβ peptide elevation. UCH-L1 elevation had a weak association with mTBI/concussion history. Multiplexed serum biomarker quantitation, coupled with reaction time assessment and symptomology determined before and after blast exposure, may serve as a platform for tracking adverse effects in the absence of a head wound or diagnosed concussion. We propose further evaluation of serum biomarkers, which are often associated with TBI, in the context of acute operational blast exposures.
format Online
Article
Text
id pubmed-6692016
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-66920162019-08-30 Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel Boutté, Angela M. Thangavelu, Bharani LaValle, Christina R. Nemes, Jeffrey Gilsdorf, Janice Shear, Deborah A. Kamimori, Gary H. PLoS One Research Article Repeated exposure to blast overpressure remains a major cause of adverse health for military personnel who, as a consequence, are at a higher risk for neurodegenerative disease and suicide. Acute, early tracking of blast related effects holds the promise of rapid health assessment prior to onset of chronic problems. Current techniques used to determine blast-related effects rely upon reporting of symptomology similar to that of concussion and neurocognitive assessment relevant to operational decrement. Here, we describe the results of a cross sectional study with pared observations. The concentration of multiple TBI-related proteins was tested in serum collected within one hour of blast exposure as a quantitative and minimally invasive strategy to augment assessment of blast-exposure effects that are associated with concussion-like symptomology and reaction time decrements. We determined that median simple reaction time (SRT) was slowed in accordance with serum Nf-L, tau, Aβ-40, and Aβ-42 elevation after overpressure exposure. In contrast, median levels of serum GFAP decreased. Individual, inter-subject analysis revealed positive correlations between changes in Nf-L and GFAP, and in Aβ-40 compared to Aβ-42. The change in Nf-L was negatively associated with tau, Aβ-40, and Aβ-42. Participants reported experiencing headaches, dizziness and taking longer to think. Dizziness was associated with reaction time decrements, GFAP or NfL suppression, as well as Aβ peptide elevation. UCH-L1 elevation had a weak association with mTBI/concussion history. Multiplexed serum biomarker quantitation, coupled with reaction time assessment and symptomology determined before and after blast exposure, may serve as a platform for tracking adverse effects in the absence of a head wound or diagnosed concussion. We propose further evaluation of serum biomarkers, which are often associated with TBI, in the context of acute operational blast exposures. Public Library of Science 2019-08-13 /pmc/articles/PMC6692016/ /pubmed/31408492 http://dx.doi.org/10.1371/journal.pone.0221036 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Boutté, Angela M.
Thangavelu, Bharani
LaValle, Christina R.
Nemes, Jeffrey
Gilsdorf, Janice
Shear, Deborah A.
Kamimori, Gary H.
Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel
title Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel
title_full Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel
title_fullStr Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel
title_full_unstemmed Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel
title_short Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel
title_sort brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: a cohort study of military personnel
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692016/
https://www.ncbi.nlm.nih.gov/pubmed/31408492
http://dx.doi.org/10.1371/journal.pone.0221036
work_keys_str_mv AT boutteangelam brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel
AT thangavelubharani brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel
AT lavallechristinar brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel
AT nemesjeffrey brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel
AT gilsdorfjanice brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel
AT sheardeboraha brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel
AT kamimorigaryh brainrelatedproteinsasserumbiomarkersofacutesubconcussiveblastoverpressureexposureacohortstudyofmilitarypersonnel