Cargando…

Efficiency of protein synthesis inhibition depends on tRNA and codon compositions

Regulation and maintenance of protein synthesis are vital to all organisms and are thus key targets of attack and defense at the cellular level. Here, we mathematically analyze protein synthesis for its sensitivity to the inhibition of elongation factor EF-Tu and/or ribosomes in dependence of the sy...

Descripción completa

Detalles Bibliográficos
Autor principal: Rudorf, Sophia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692046/
https://www.ncbi.nlm.nih.gov/pubmed/31369559
http://dx.doi.org/10.1371/journal.pcbi.1006979
Descripción
Sumario:Regulation and maintenance of protein synthesis are vital to all organisms and are thus key targets of attack and defense at the cellular level. Here, we mathematically analyze protein synthesis for its sensitivity to the inhibition of elongation factor EF-Tu and/or ribosomes in dependence of the system’s tRNA and codon compositions. We find that protein synthesis reacts ultrasensitively to a decrease in the elongation factor’s concentration for systems with an imbalance between codon usages and tRNA concentrations. For well-balanced tRNA/codon compositions, protein synthesis is impeded more effectively by the inhibition of ribosomes instead of EF-Tu. Our predictions are supported by re-evaluated experimental data as well as by independent computer simulations. Not only does the described ultrasensitivity render EF-Tu a distinguished target of protein synthesis inhibiting antibiotics. It may also enable persister cell formation mediated by toxin-antitoxin systems. The strong impact of the tRNA/codon composition provides a basis for tissue-specificities of disorders caused by mutations of human mitochondrial EF-Tu as well as for the potential use of EF-Tu targeting drugs for tissue-specific treatments.