Cargando…
Analytics-statistics mixed training and its fitness to semisupervised manufacturing
While there have been many studies using machine learning (ML) algorithms to predict process outcomes and device performance in semiconductor manufacturing, the extensively developed technology computer-aided design (TCAD) physical models should play a more significant role in conjunction with ML. W...
Autores principales: | Parashar, Parag, Chen, Chun Han, Akbar, Chandni, Fu, Sze Ming, Rawat, Tejender S., Pratik, Sparsh, Butola, Rajat, Chen, Shih Han, Lin, Albert S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692054/ https://www.ncbi.nlm.nih.gov/pubmed/31408473 http://dx.doi.org/10.1371/journal.pone.0220607 |
Ejemplares similares
-
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Self-Trained LMT for Semisupervised Learning
por: Fazakis, Nikos, et al.
Publicado: (2016) -
Weakly- and Semisupervised Probabilistic Segmentation and Quantification of Reverberation Artifacts
por: Hung, Alex Ling Yu, et al.
Publicado: (2022) -
Semisupervised Generative Autoencoder for Single-Cell Data
por: Trong, Trung Ngo, et al.
Publicado: (2020) -
Semisupervised Semantic Segmentation with Mutual Correction Learning
por: Xiao, Yifan, et al.
Publicado: (2022)