Cargando…
Predicting seismic-induced liquefaction through ensemble learning frameworks
The regional nature of liquefaction records and limited information available for a certain set of explanatories motivate the development of complex prediction techniques. Indirect methods are commonly applied to incidentally derive a hyperplane to this binary classification problem. Machine learnin...
Autores principales: | Alobaidi, Mohammad H., Meguid, Mohamed A., Chebana, Fateh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692379/ https://www.ncbi.nlm.nih.gov/pubmed/31409827 http://dx.doi.org/10.1038/s41598-019-48044-0 |
Ejemplares similares
-
Dataset on SPT-based seismic soil liquefaction
por: Cetin, K. Onder, et al.
Publicado: (2018) -
Semi-supervised learning framework for oil and gas pipeline failure detection
por: Alobaidi, Mohammad H., et al.
Publicado: (2022) -
A unified classification model for modeling of seismic liquefaction potential of soil based on CPT
por: Samui, Pijush, et al.
Publicado: (2015) -
Application of Feedforward Neural Network and SPT Results in the Estimation of Seismic Soil Liquefaction Triggering
por: Pham, Tuan Anh
Publicado: (2021) -
The use of the SPT-based seismic soil liquefaction triggering evaluation methodology in engineering hazard assessments
por: Cetin, K. Onder, et al.
Publicado: (2018)