Cargando…
Assessment of Machine Learning of Breast Pathology Structures for Automated Differentiation of Breast Cancer and High-Risk Proliferative Lesions
IMPORTANCE: Following recent US Food and Drug Administration approval, adoption of whole slide imaging in clinical settings may be imminent, and diagnostic accuracy, particularly among challenging breast biopsy specimens, may benefit from computerized diagnostic support tools. OBJECTIVE: To develop...
Autores principales: | Mercan, Ezgi, Mehta, Sachin, Bartlett, Jamen, Shapiro, Linda G., Weaver, Donald L., Elmore, Joann G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692690/ https://www.ncbi.nlm.nih.gov/pubmed/31397859 http://dx.doi.org/10.1001/jamanetworkopen.2019.8777 |
Ejemplares similares
-
MLCD: A Unified Software Package for Cancer Diagnosis
por: Wu, Wenjun, et al.
Publicado: (2020) -
Region of Interest Identification and Diagnostic Agreement in Breast Pathology
por: Nagarkar, Dilip B., et al.
Publicado: (2016) -
Breast Cancer Prognostic Factors in the Digital Era: Comparison of Nottingham Grade using Whole Slide Images and Glass Slides
por: Davidson, Tara M., et al.
Publicado: (2019) -
Pupil diameter changes reflect difficulty and diagnostic accuracy during medical image interpretation
por: Brunyé, Tad T., et al.
Publicado: (2016) -
Automated Classification of Benign and Malignant Proliferative Breast Lesions
por: Radiya-Dixit, Evani, et al.
Publicado: (2017)