Cargando…
PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms
PROTEOFORMER is a pipeline that enables the automated processing of data derived from ribosome profiling (RIBO-seq, i.e. the sequencing of ribosome-protected mRNA fragments). As such, genome-wide ribosome occupancies lead to the delineation of data-specific translation product candidates and these c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692777/ https://www.ncbi.nlm.nih.gov/pubmed/31040227 http://dx.doi.org/10.1074/mcp.RA118.001218 |
_version_ | 1783443602283692032 |
---|---|
author | Verbruggen, Steven Ndah, Elvis Van Criekinge, Wim Gessulat, Siegfried Kuster, Bernhard Wilhelm, Mathias Van Damme, Petra Menschaert, Gerben |
author_facet | Verbruggen, Steven Ndah, Elvis Van Criekinge, Wim Gessulat, Siegfried Kuster, Bernhard Wilhelm, Mathias Van Damme, Petra Menschaert, Gerben |
author_sort | Verbruggen, Steven |
collection | PubMed |
description | PROTEOFORMER is a pipeline that enables the automated processing of data derived from ribosome profiling (RIBO-seq, i.e. the sequencing of ribosome-protected mRNA fragments). As such, genome-wide ribosome occupancies lead to the delineation of data-specific translation product candidates and these can improve the mass spectrometry-based identification. Since its first publication, different upgrades, new features and extensions have been added to the PROTEOFORMER pipeline. Some of the most important upgrades include P-site offset calculation during mapping, comprehensive data pre-exploration, the introduction of two alternative proteoform calling strategies and extended pipeline output features. These novelties are illustrated by analyzing ribosome profiling data of human HCT116 and Jurkat data. The different proteoform calling strategies are used alongside one another and in the end combined together with reference sequences from UniProt. Matching mass spectrometry data are searched against this extended search space with MaxQuant. Overall, besides annotated proteoforms, this pipeline leads to the identification and validation of different categories of new proteoforms, including translation products of up- and downstream open reading frames, 5′ and 3′ extended and truncated proteoforms, single amino acid variants, splice variants and translation products of so-called noncoding regions. Further, proof-of-concept is reported for the improvement of spectrum matching by including Prosit, a deep neural network strategy that adds extra fragmentation spectrum intensity features to the analysis. In the light of ribosome profiling-driven proteogenomics, it is shown that this allows validating the spectrum matches of newly identified proteoforms with elevated stringency. These updates and novel conclusions provide new insights and lessons for the ribosome profiling-based proteogenomic research field. More practical information on the pipeline, raw code, the user manual (README) and explanations on the different modes of availability can be found at the GitHub repository of PROTEOFORMER: https://github.com/Biobix/proteoformer. |
format | Online Article Text |
id | pubmed-6692777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-66927772019-08-15 PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms Verbruggen, Steven Ndah, Elvis Van Criekinge, Wim Gessulat, Siegfried Kuster, Bernhard Wilhelm, Mathias Van Damme, Petra Menschaert, Gerben Mol Cell Proteomics Research PROTEOFORMER is a pipeline that enables the automated processing of data derived from ribosome profiling (RIBO-seq, i.e. the sequencing of ribosome-protected mRNA fragments). As such, genome-wide ribosome occupancies lead to the delineation of data-specific translation product candidates and these can improve the mass spectrometry-based identification. Since its first publication, different upgrades, new features and extensions have been added to the PROTEOFORMER pipeline. Some of the most important upgrades include P-site offset calculation during mapping, comprehensive data pre-exploration, the introduction of two alternative proteoform calling strategies and extended pipeline output features. These novelties are illustrated by analyzing ribosome profiling data of human HCT116 and Jurkat data. The different proteoform calling strategies are used alongside one another and in the end combined together with reference sequences from UniProt. Matching mass spectrometry data are searched against this extended search space with MaxQuant. Overall, besides annotated proteoforms, this pipeline leads to the identification and validation of different categories of new proteoforms, including translation products of up- and downstream open reading frames, 5′ and 3′ extended and truncated proteoforms, single amino acid variants, splice variants and translation products of so-called noncoding regions. Further, proof-of-concept is reported for the improvement of spectrum matching by including Prosit, a deep neural network strategy that adds extra fragmentation spectrum intensity features to the analysis. In the light of ribosome profiling-driven proteogenomics, it is shown that this allows validating the spectrum matches of newly identified proteoforms with elevated stringency. These updates and novel conclusions provide new insights and lessons for the ribosome profiling-based proteogenomic research field. More practical information on the pipeline, raw code, the user manual (README) and explanations on the different modes of availability can be found at the GitHub repository of PROTEOFORMER: https://github.com/Biobix/proteoformer. The American Society for Biochemistry and Molecular Biology 2019-08-09 2019-04-30 /pmc/articles/PMC6692777/ /pubmed/31040227 http://dx.doi.org/10.1074/mcp.RA118.001218 Text en © 2019 Verbruggen et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) . |
spellingShingle | Research Verbruggen, Steven Ndah, Elvis Van Criekinge, Wim Gessulat, Siegfried Kuster, Bernhard Wilhelm, Mathias Van Damme, Petra Menschaert, Gerben PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms |
title | PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms |
title_full | PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms |
title_fullStr | PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms |
title_full_unstemmed | PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms |
title_short | PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms |
title_sort | proteoformer 2.0: further developments in the ribosome profiling-assisted proteogenomic hunt for new proteoforms |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692777/ https://www.ncbi.nlm.nih.gov/pubmed/31040227 http://dx.doi.org/10.1074/mcp.RA118.001218 |
work_keys_str_mv | AT verbruggensteven proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT ndahelvis proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT vancriekingewim proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT gessulatsiegfried proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT kusterbernhard proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT wilhelmmathias proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT vandammepetra proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms AT menschaertgerben proteoformer20furtherdevelopmentsintheribosomeprofilingassistedproteogenomichuntfornewproteoforms |