Cargando…

In vitro and in vivo effects of traditional Chinese medicine formula T33 in human breast cancer cells

BACKGROUND: Breast cancer is the leading cause of cancer-related death in women worldwide. Although traditional Chinese medicine (TCM) is commonly used by patients with breast cancer, little is known about TCM prescriptions for breast cancer. This study investigated the effects of a new TCM formula,...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yu-Te, Hsiao, Chao-Hsiang, Tzang, Bor-Show, Hsu, Tsai-Ching
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693224/
https://www.ncbi.nlm.nih.gov/pubmed/31409331
http://dx.doi.org/10.1186/s12906-019-2630-5
Descripción
Sumario:BACKGROUND: Breast cancer is the leading cause of cancer-related death in women worldwide. Although traditional Chinese medicine (TCM) is commonly used by patients with breast cancer, little is known about TCM prescriptions for breast cancer. This study investigated the effects of a new TCM formula, T33, comprising Radix Kansui, Rheum rhabarbarum, Paeonia lactiflora, Jiangbanxia, and Zhigancao on breast cancer cells in vitro and in vivo. METHODS: To evaluate the effects of T33 on human breast cancer, HMEpiC, MDA-MB231 and MCF-7 cells were treated with different concentrations of T33 and then analyzed using MTT and Transwell migration assays. To elucidate the involvement of autophagy in the T33-induced death of MDA-MB231 and MCF-7 cells, immunofluorescence staining with LC3-II-specific antibodies was performed. Tumor xenografts were generated by subcutaneously injecting either MDA-MB231 or MCF-7 cells into BALB/c nude mice to determine the effects of T33 on these cell lines in vivo. RESULTS: The experimental results revealed that 0.1 mg/mL, 0.5 mg/mL, 2.5 mg/mL, 5 mg/mL and 10 mg/mL T33 significantly inhibited the proliferation and invasion of MDA-MB231 and MCF-7 cells. Moreover, significant autophagy was observed in MDA-MB231 and MCF-7 cells in the presence of 2.5 mg/mL, 5 mg/mL and 10 mg/mL T33. An animal study further revealed that both low (200 mg/kg) and high (600 mg/kg) doses of T33 inhibited the proliferation of xenografted breast cancer cells in BALB/c nude mice. CONCLUSION: These findings demonstrate for the first time that T33 has potential in the treatment of breast cancer owing to its antiproliferative effects and induction of autophagy.