Cargando…
Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis
BACKGROUND: Ultra-fast pseudo-alignment approaches are the tool of choice in transcript-level RNA sequencing (RNA-seq) analyses. Unfortunately, these methods couple the tasks of pseudo-alignment and transcript quantification. This coupling precludes the direct usage of pseudo-alignment to other expr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693274/ https://www.ncbi.nlm.nih.gov/pubmed/31409274 http://dx.doi.org/10.1186/s12859-019-2947-6 |
_version_ | 1783443681901019136 |
---|---|
author | Gunady, Mohamed K Mount, Stephen M Corrada Bravo, Héctor |
author_facet | Gunady, Mohamed K Mount, Stephen M Corrada Bravo, Héctor |
author_sort | Gunady, Mohamed K |
collection | PubMed |
description | BACKGROUND: Ultra-fast pseudo-alignment approaches are the tool of choice in transcript-level RNA sequencing (RNA-seq) analyses. Unfortunately, these methods couple the tasks of pseudo-alignment and transcript quantification. This coupling precludes the direct usage of pseudo-alignment to other expression analyses, including alternative splicing or differential gene expression analysis, without including a non-essential transcript quantification step. RESULTS: In this paper, we introduce a transcriptome segmentation approach to decouple these two tasks. We propose an efficient algorithm to generate maximal disjoint segments given a transcriptome reference library on which ultra-fast pseudo-alignment can be used to produce per-sample segment counts. We show how to apply these maximally unambiguous count statistics in two specific expression analyses – alternative splicing and gene differential expression – without the need of a transcript quantification step. Our experiments based on simulated and experimental data showed that the use of segment counts, like other methods that rely on local coverage statistics, provides an advantage over approaches that rely on transcript quantification in detecting and correctly estimating local splicing in the case of incomplete transcript annotations. CONCLUSIONS: The transcriptome segmentation approach implemented in Yanagi exploits the computational and space efficiency of pseudo-alignment approaches. It significantly expands their applicability and interpretability in a variety of RNA-seq analyses by providing the means to model and capture local coverage variation in these analyses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2947-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6693274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-66932742019-08-19 Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis Gunady, Mohamed K Mount, Stephen M Corrada Bravo, Héctor BMC Bioinformatics Methodology Article BACKGROUND: Ultra-fast pseudo-alignment approaches are the tool of choice in transcript-level RNA sequencing (RNA-seq) analyses. Unfortunately, these methods couple the tasks of pseudo-alignment and transcript quantification. This coupling precludes the direct usage of pseudo-alignment to other expression analyses, including alternative splicing or differential gene expression analysis, without including a non-essential transcript quantification step. RESULTS: In this paper, we introduce a transcriptome segmentation approach to decouple these two tasks. We propose an efficient algorithm to generate maximal disjoint segments given a transcriptome reference library on which ultra-fast pseudo-alignment can be used to produce per-sample segment counts. We show how to apply these maximally unambiguous count statistics in two specific expression analyses – alternative splicing and gene differential expression – without the need of a transcript quantification step. Our experiments based on simulated and experimental data showed that the use of segment counts, like other methods that rely on local coverage statistics, provides an advantage over approaches that rely on transcript quantification in detecting and correctly estimating local splicing in the case of incomplete transcript annotations. CONCLUSIONS: The transcriptome segmentation approach implemented in Yanagi exploits the computational and space efficiency of pseudo-alignment approaches. It significantly expands their applicability and interpretability in a variety of RNA-seq analyses by providing the means to model and capture local coverage variation in these analyses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2947-6) contains supplementary material, which is available to authorized users. BioMed Central 2019-08-13 /pmc/articles/PMC6693274/ /pubmed/31409274 http://dx.doi.org/10.1186/s12859-019-2947-6 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Gunady, Mohamed K Mount, Stephen M Corrada Bravo, Héctor Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis |
title | Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis |
title_full | Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis |
title_fullStr | Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis |
title_full_unstemmed | Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis |
title_short | Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis |
title_sort | yanagi: fast and interpretable segment-based alternative splicing and gene expression analysis |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693274/ https://www.ncbi.nlm.nih.gov/pubmed/31409274 http://dx.doi.org/10.1186/s12859-019-2947-6 |
work_keys_str_mv | AT gunadymohamedk yanagifastandinterpretablesegmentbasedalternativesplicingandgeneexpressionanalysis AT mountstephenm yanagifastandinterpretablesegmentbasedalternativesplicingandgeneexpressionanalysis AT corradabravohector yanagifastandinterpretablesegmentbasedalternativesplicingandgeneexpressionanalysis |