Cargando…
Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis
BACKGROUND: The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax di...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693287/ https://www.ncbi.nlm.nih.gov/pubmed/31412763 http://dx.doi.org/10.1186/s12864-019-6022-5 |
Sumario: | BACKGROUND: The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the rectal glands of both male and female adults of B. minax using Illumina sequencing technology, and annotated gene families potentially responsible for chemosensory. RESULTS: We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs). Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-qPCR). Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together. CONCLUSIONS: A large number of chemosensory genes were identified from transcriptomic data. Identification of these candidate genes and their expression profiles in various tissues provide useful information for future studies towards revealing their function in B. minax. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-6022-5) contains supplementary material, which is available to authorized users. |
---|