Cargando…
Augmenting Basin-Hopping With Techniques From Unsupervised Machine Learning: Applications in Spectroscopy and Ion Mobility
Evolutionary algorithms such as the basin-hopping (BH) algorithm have proven to be useful for difficult non-linear optimization problems with multiple modalities and variables. Applications of these algorithms range from characterization of molecular states in statistical physics and molecular biolo...
Autores principales: | Zhou, Ce, Ieritano, Christian, Hopkins, William Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693329/ https://www.ncbi.nlm.nih.gov/pubmed/31440497 http://dx.doi.org/10.3389/fchem.2019.00519 |
Ejemplares similares
-
Unsupervised machine learning discovers classes in aluminium alloys
por: Bhat, Ninad, et al.
Publicado: (2023) -
Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics
por: Zhou, Hong, et al.
Publicado: (2022) -
Grand and Semigrand Canonical Basin-Hopping
por: Calvo, F., et al.
Publicado: (2015) -
Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining
por: Wen, Mingjian, et al.
Publicado: (2022) -
Unraveling the origin of reductive stability of super-concentrated electrolytes from first principles and unsupervised machine learning
por: Wang, Feng, et al.
Publicado: (2022)