Cargando…
The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693516/ https://www.ncbi.nlm.nih.gov/pubmed/31440221 http://dx.doi.org/10.3389/fmicb.2019.01793 |
_version_ | 1783443714714107904 |
---|---|
author | Yang, Wentao Petersen, Carola Pees, Barbara Zimmermann, Johannes Waschina, Silvio Dirksen, Philipp Rosenstiel, Philip Tholey, Andreas Leippe, Matthias Dierking, Katja Kaleta, Christoph Schulenburg, Hinrich |
author_facet | Yang, Wentao Petersen, Carola Pees, Barbara Zimmermann, Johannes Waschina, Silvio Dirksen, Philipp Rosenstiel, Philip Tholey, Andreas Leippe, Matthias Dierking, Katja Kaleta, Christoph Schulenburg, Hinrich |
author_sort | Yang, Wentao |
collection | PubMed |
description | The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode’s dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions. |
format | Online Article Text |
id | pubmed-6693516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66935162019-08-22 The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life Yang, Wentao Petersen, Carola Pees, Barbara Zimmermann, Johannes Waschina, Silvio Dirksen, Philipp Rosenstiel, Philip Tholey, Andreas Leippe, Matthias Dierking, Katja Kaleta, Christoph Schulenburg, Hinrich Front Microbiol Microbiology The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode’s dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions. Frontiers Media S.A. 2019-08-07 /pmc/articles/PMC6693516/ /pubmed/31440221 http://dx.doi.org/10.3389/fmicb.2019.01793 Text en Copyright © 2019 Yang, Petersen, Pees, Zimmermann, Waschina, Dirksen, Rosenstiel, Tholey, Leippe, Dierking, Kaleta and Schulenburg. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Yang, Wentao Petersen, Carola Pees, Barbara Zimmermann, Johannes Waschina, Silvio Dirksen, Philipp Rosenstiel, Philip Tholey, Andreas Leippe, Matthias Dierking, Katja Kaleta, Christoph Schulenburg, Hinrich The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life |
title | The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life |
title_full | The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life |
title_fullStr | The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life |
title_full_unstemmed | The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life |
title_short | The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life |
title_sort | inducible response of the nematode caenorhabditis elegans to members of its natural microbiota across development and adult life |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693516/ https://www.ncbi.nlm.nih.gov/pubmed/31440221 http://dx.doi.org/10.3389/fmicb.2019.01793 |
work_keys_str_mv | AT yangwentao theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT petersencarola theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT peesbarbara theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT zimmermannjohannes theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT waschinasilvio theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT dirksenphilipp theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT rosenstielphilip theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT tholeyandreas theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT leippematthias theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT dierkingkatja theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT kaletachristoph theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT schulenburghinrich theinducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT yangwentao inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT petersencarola inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT peesbarbara inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT zimmermannjohannes inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT waschinasilvio inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT dirksenphilipp inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT rosenstielphilip inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT tholeyandreas inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT leippematthias inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT dierkingkatja inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT kaletachristoph inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife AT schulenburghinrich inducibleresponseofthenematodecaenorhabditiseleganstomembersofitsnaturalmicrobiotaacrossdevelopmentandadultlife |