Cargando…
NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution
The advent of quantitative approaches that enable interrogation of transcription at single nucleotide resolution has allowed a novel understanding of transcriptional regulation previously undefined. However, little is known, at such high resolution, how transcription factors directly influence RNA P...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693550/ https://www.ncbi.nlm.nih.gov/pubmed/31156037 http://dx.doi.org/10.1080/15476286.2019.1621625 |
_version_ | 1783443717296750592 |
---|---|
author | Mylonas, Constantine Tessarz, Peter |
author_facet | Mylonas, Constantine Tessarz, Peter |
author_sort | Mylonas, Constantine |
collection | PubMed |
description | The advent of quantitative approaches that enable interrogation of transcription at single nucleotide resolution has allowed a novel understanding of transcriptional regulation previously undefined. However, little is known, at such high resolution, how transcription factors directly influence RNA Pol II pausing and directionality. To map the impact of transcription/elongation factors on transcription dynamics genome-wide at base pair resolution, we developed an adapted NET-seq protocol called NET-prism (Native Elongating Transcription by Polymerase-Regulated Immunoprecipitants in the Mammalian genome). Application of NET-prism on elongation factors (Spt6, Ssrp1), splicing factors (Sf1), and components of the pre-initiation complex (PIC) (TFIID, and Mediator) reveals their inherent command on transcription dynamics, with regards to directionality and pausing over promoters, splice sites, and enhancers/super-enhancers. NET-prism will be broadly applicable as it exposes transcription factor/Pol II dependent topographic specificity and thus, a new degree of regulatory complexity during gene expression. |
format | Online Article Text |
id | pubmed-6693550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-66935502019-08-26 NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution Mylonas, Constantine Tessarz, Peter RNA Biol Technical Paper The advent of quantitative approaches that enable interrogation of transcription at single nucleotide resolution has allowed a novel understanding of transcriptional regulation previously undefined. However, little is known, at such high resolution, how transcription factors directly influence RNA Pol II pausing and directionality. To map the impact of transcription/elongation factors on transcription dynamics genome-wide at base pair resolution, we developed an adapted NET-seq protocol called NET-prism (Native Elongating Transcription by Polymerase-Regulated Immunoprecipitants in the Mammalian genome). Application of NET-prism on elongation factors (Spt6, Ssrp1), splicing factors (Sf1), and components of the pre-initiation complex (PIC) (TFIID, and Mediator) reveals their inherent command on transcription dynamics, with regards to directionality and pausing over promoters, splice sites, and enhancers/super-enhancers. NET-prism will be broadly applicable as it exposes transcription factor/Pol II dependent topographic specificity and thus, a new degree of regulatory complexity during gene expression. Taylor & Francis 2019-06-03 /pmc/articles/PMC6693550/ /pubmed/31156037 http://dx.doi.org/10.1080/15476286.2019.1621625 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Paper Mylonas, Constantine Tessarz, Peter NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution |
title | NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution |
title_full | NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution |
title_fullStr | NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution |
title_full_unstemmed | NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution |
title_short | NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution |
title_sort | net-prism enables rna polymerase-dedicated transcriptional interrogation at nucleotide resolution |
topic | Technical Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693550/ https://www.ncbi.nlm.nih.gov/pubmed/31156037 http://dx.doi.org/10.1080/15476286.2019.1621625 |
work_keys_str_mv | AT mylonasconstantine netprismenablesrnapolymerasededicatedtranscriptionalinterrogationatnucleotideresolution AT tessarzpeter netprismenablesrnapolymerasededicatedtranscriptionalinterrogationatnucleotideresolution |