Cargando…
Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation
The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea mays L.), but little is known about the biochemical interactions between M. dirhodum and its host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the defense responses of maize to bio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693767/ https://www.ncbi.nlm.nih.gov/pubmed/31412084 http://dx.doi.org/10.1371/journal.pone.0221160 |
_version_ | 1783443734995664896 |
---|---|
author | Łukasik, Iwona Wołoch, Aleksandra Sytykiewicz, Hubert Sprawka, Iwona Goławska, Sylwia |
author_facet | Łukasik, Iwona Wołoch, Aleksandra Sytykiewicz, Hubert Sprawka, Iwona Goławska, Sylwia |
author_sort | Łukasik, Iwona |
collection | PubMed |
description | The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea mays L.), but little is known about the biochemical interactions between M. dirhodum and its host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the defense responses of maize to biotic stress factors, including aphids. The purpose of this research was to evaluate the impact of M. dirhodum herbivory on the total thiol (TT), protein bound thiol (PT), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents as well as the activity of GST in three varieties of Z. mays (Złota Karłowa, Ambrozja and Płomyk), that were classified as aphid-susceptible, aphid-relatively resistant and aphid-resistant, respectively. The earliest and strongest aphid-triggered alterations in the levels of TT, PT and GSH, and the greatest induction of GST activity, were recorded in the resistant Płomyk seedlings in relation to the relatively resistant Ambrozja and the susceptible Złota Karłowa. |
format | Online Article Text |
id | pubmed-6693767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66937672019-08-16 Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation Łukasik, Iwona Wołoch, Aleksandra Sytykiewicz, Hubert Sprawka, Iwona Goławska, Sylwia PLoS One Research Article The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea mays L.), but little is known about the biochemical interactions between M. dirhodum and its host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the defense responses of maize to biotic stress factors, including aphids. The purpose of this research was to evaluate the impact of M. dirhodum herbivory on the total thiol (TT), protein bound thiol (PT), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents as well as the activity of GST in three varieties of Z. mays (Złota Karłowa, Ambrozja and Płomyk), that were classified as aphid-susceptible, aphid-relatively resistant and aphid-resistant, respectively. The earliest and strongest aphid-triggered alterations in the levels of TT, PT and GSH, and the greatest induction of GST activity, were recorded in the resistant Płomyk seedlings in relation to the relatively resistant Ambrozja and the susceptible Złota Karłowa. Public Library of Science 2019-08-14 /pmc/articles/PMC6693767/ /pubmed/31412084 http://dx.doi.org/10.1371/journal.pone.0221160 Text en © 2019 Łukasik et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Łukasik, Iwona Wołoch, Aleksandra Sytykiewicz, Hubert Sprawka, Iwona Goławska, Sylwia Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
title | Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
title_full | Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
title_fullStr | Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
title_full_unstemmed | Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
title_short | Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
title_sort | changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose-grass aphid infestation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693767/ https://www.ncbi.nlm.nih.gov/pubmed/31412084 http://dx.doi.org/10.1371/journal.pone.0221160 |
work_keys_str_mv | AT łukasikiwona changesinthecontentofthiolcompoundsandtheactivityofglutathionestransferaseinmaizeseedlingsinresponsetoarosegrassaphidinfestation AT wołochaleksandra changesinthecontentofthiolcompoundsandtheactivityofglutathionestransferaseinmaizeseedlingsinresponsetoarosegrassaphidinfestation AT sytykiewiczhubert changesinthecontentofthiolcompoundsandtheactivityofglutathionestransferaseinmaizeseedlingsinresponsetoarosegrassaphidinfestation AT sprawkaiwona changesinthecontentofthiolcompoundsandtheactivityofglutathionestransferaseinmaizeseedlingsinresponsetoarosegrassaphidinfestation AT goławskasylwia changesinthecontentofthiolcompoundsandtheactivityofglutathionestransferaseinmaizeseedlingsinresponsetoarosegrassaphidinfestation |